English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Deep Learning to Analyze Sliding Drops

Shumaly, S., Darvish, F., Li, X., Saal, A., Hinduja, C., Steffen, W., et al. (2023). Deep Learning to Analyze Sliding Drops. Langmuir, 39(3), 1111-1122. doi:10.1021/acs.langmuir.2c02847.

Item is

Files

hide Files
:
acs.langmuir.2c02847.pdf (Publisher version), 5MB
Name:
acs.langmuir.2c02847.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2023
Copyright Info:
The Authors

Locators

show

Creators

hide
 Creators:
Shumaly, Sajjad1, Author           
Darvish, Fahimeh1, Author           
Li, Xiaomei1, Author           
Saal, Alexander1, Author           
Hinduja, Chirag1, Author           
Steffen, Werner1, Author           
Kukharenko, Oleksandra2, Author           
Butt, Hans-Jürgen1, Author           
Berger, Rüdiger1, Author           
Affiliations:
1Dept. Butt: Physics at Interfaces, MPI for Polymer Research, Max Planck Society, ou_1800286              
2Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society, ou_1800287              

Content

show

Details

hide
Language(s): eng - English
 Dates: 2023-01-122023-01-24
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1021/acs.langmuir.2c02847
 Degree: -

Event

show

Legal Case

show

Project information

hide
Project name : DynaMo
Grant ID : 883631
Funding program : ERC-2019-ADG (H2020)
Funding organization : European Commission (EC)

Source 1

hide
Title: Langmuir
  Abbreviation : Langmuir
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Columbus, OH : American Chemical Society
Pages: - Volume / Issue: 39 (3) Sequence Number: - Start / End Page: 1111 - 1122 Identifier: ISSN: 0743-7463
CoNE: https://pure.mpg.de/cone/journals/resource/954925541194