日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
EndNote (UTF-8)
 
ダウンロード電子メール
  Ab initio vacancy formation energies and kinetics at metal surfaces under high electric field

Katnagallu, S., Freysoldt, C., Gault, B., & Neugebauer, J. (2023). Ab initio vacancy formation energies and kinetics at metal surfaces under high electric field. Physical Review B, 107(4):. doi:10.1103/PhysRevB.107.L041406.

Item is

基本情報

非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000C-91FB-5 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000C-9204-A
資料種別: 学術論文

ファイル

非表示: ファイル
:
PhysRevB.107.L041406.pdf (出版社版), 2MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-000C-91FD-3
ファイル名:
PhysRevB.107.L041406.pdf
説明:
-
OA-Status:
Green
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
2023
著作権情報:
The Authors. Published by the American Physical Society.

関連URL

表示:

作成者

非表示:
 作成者:
Katnagallu, Shyam1, 著者           
Freysoldt, Christoph2, 著者           
Gault, Baptiste1, 3, 著者           
Neugebauer, Jörg4, 著者           
所属:
1Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
2Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863342              
3Imperial College, Royal School of Mines, Department of Materials, London, SW7 2AZ, UK, ou_persistent22              
4Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              

内容説明

非表示:
キーワード: Annihilation; Density functional theory; Ab initio; Atomic configuration; Condition; Field ion microscope; Field ion microscopy; Formation kinetics; High electric fields; Metal surfaces; Microscope images; Vacancy formation energies; Electric fields
 要旨: Recording field ion microscope images under field-evaporating conditions and subsequently reconstructing the underlying atomic configuration, called three-dimensional field ion microscopy (3D-FIM), is one of the few techniques capable of resolving crystalline defects at an atomic scale. However, the quantification of the observed vacancies and their origins are still a matter of debate. It was suggested that high electrostatic fields (1-5 V/Å) used in 3D-FIM could introduce artifact vacancies. To investigate such effects, we used density functional theory simulations. Stepped nickel and platinum surfaces with kinks were modeled in the repeated-slab approach with a (971) surface orientation. An electrostatic field of up to 4 V/Å was introduced on one side of the slab using the generalized dipole correction. Contrary to what was proposed, we show that the formation of vacancies on the electrified metal surface is more difficult compared to a field-free case. We also find that the electrostatic field can introduce kinetic barriers to a potential "vacancy annihilation"mechanism. We rationalize these findings by comparing to insights from field evaporation models. © 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.

資料詳細

非表示:
言語: eng - English
 日付: 2023-01-15
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1103/PhysRevB.107.L041406
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

非表示:
出版物名: Physical Review B
  省略形 : Phys. Rev. B
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Woodbury, NY : American Physical Society
ページ: - 巻号: 107 (4) 通巻号: L041406 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008