English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A population code for spatial representation in the larval zebrafish telencephalon

Yang, C., Mammen, L., Kim, B., Robson, D., & Li, J. (2023). A population code for spatial representation in the larval zebrafish telencephalon. Poster presented at Computational and Systems Neuroscience Meeting (COSYNE 2023), Montreal, Quebec, Canada.

Item is

Files

show Files

Creators

show
hide
 Creators:
Yang, C1, Author           
Mammen, L1, Author                 
Kim, B, Author           
Robson, D1, Author                 
Li, J1, Author                 
Affiliations:
1Research Group Systems Neuroscience & Neuroengineering, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3168483              

Content

show
hide
Free keywords: -
 Abstract: The vertebrate telencephalon is the site of complex cognitive processes such as spatial cognition. The larval zebrafish telencephalon is a compact circuit of ~10,000 neurons that nevertheless contains homologous structures to the mammalian basal ganglia and limbic system (e.g. hippocampus and amygdala). However, despite long- standing evidence that spatial navigation and learning in adult fish requires an intact telencephalon, cells believed to underlie spatial cognition in mammals (e.g. place and grid cells) have yet to be established in any fish species. Using a tracking microscope to image brain-wide activity at cellular resolution in freely swimming larval zebrafish, we can compute the spatial specificity of every cell in the zebrafish brain. Strikingly, in every animal, cells with the highest spatial specificity are enriched in the zebrafish telencephalon. These cells form a population code of space, from which we can decode the animals spatial location across time. In a novel environment, the activity of these place-encoding cells undergoes remapping. In a constant environment, the activity manifold of place- encoding cells gradually untangles across time. Given the compact nature of the zebrafish telencephalon, this reduced model system is uniquely positioned for building a complete mechanistic model of spatial cognition.

Details

show
hide
Language(s):
 Dates: 2023-03
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: Computational and Systems Neuroscience Meeting (COSYNE 2023)
Place of Event: Montreal, Quebec, Canada
Start-/End Date: 2023-03-09 - 2023-03-12

Legal Case

show

Project information

show

Source 1

show
hide
Title: Computational and Systems Neuroscience Meeting (COSYNE 2023)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: III-032 Start / End Page: 204 Identifier: -