Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Deciphering the Structural and Chemical Transformations of Oxide Catalysts during Oxygen Evolution Reaction Using Quick X-ray Absorption Spectroscopy and Machine Learning

Timoshenko, J., Haase, F., Saddeler, S., Rüscher, M., Jeon, H., Herzog, A., et al. (2023). Deciphering the Structural and Chemical Transformations of Oxide Catalysts during Oxygen Evolution Reaction Using Quick X-ray Absorption Spectroscopy and Machine Learning. Journal of the American Chemical Society, 145(7), 4065-4080. doi:10.1021/jacs.2c11824.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
jacs.2c11824.pdf (Verlagsversion), 8MB
Name:
jacs.2c11824.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2023
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Timoshenko, Janis1, Autor           
Haase, Felix1, Autor           
Saddeler, Sascha, Autor
Rüscher, Martina1, Autor           
Jeon, Hyosang1, Autor           
Herzog, Antonia1, Autor           
Hejral, Uta1, Autor           
Bergmann, Arno1, Autor           
Schulz, Stephan, Autor
Roldan Cuenya, Beatriz1, Autor           
Affiliations:
1Interface Science, Fritz Haber Institute, Max Planck Society, ou_2461712              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Bimetallic transition-metal oxides, such as spinel-like CoxFe3–xO4 materials, are known as attractive catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. Nonetheless, unveiling the real active species and active states in these catalysts remains a challenge. The coexistence of metal ions in different chemical states and in different chemical environments, including disordered X-ray amorphous phases that all evolve under reaction conditions, hinders the application of common operando techniques. Here, we address this issue by relying on operando quick X-ray absorption fine structure spectroscopy, coupled with unsupervised and supervised machine learning methods. We use principal component analysis to understand the subtle changes in the X-ray absorption near-edge structure spectra and develop an artificial neural network to decipher the extended X-ray absorption fine structure spectra. This allows us to separately track the evolution of tetrahedrally and octahedrally coordinated species and to disentangle the chemical changes and several phase transitions taking place in CoxFe3–xO4 catalysts and on their active surface, related to the conversion of disordered oxides into spinel-like structures, transformation of spinels into active oxyhydroxides, and changes in the degree of spinel inversion in the course of the activation treatment and under OER conditions. By correlating the revealed structural changes with the distinct catalytic activity for a series of CoxFe3–xO4 samples, we elucidate the active species and OER mechanism.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-11-072023-02-102023-02-22
 Publikationsstatus: Erschienen
 Seiten: 16
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/jacs.2c11824
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of the American Chemical Society
  Andere : JACS
  Kurztitel : J. Am. Chem. Soc.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: 16 Band / Heft: 145 (7) Artikelnummer: - Start- / Endseite: 4065 - 4080 Identifikator: ISSN: 0002-7863
CoNE: https://pure.mpg.de/cone/journals/resource/954925376870