Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Single spikes drive sequential propagation and routing of activity in a cortical network

Riquelme, J. L., Hemberger, M., Laurent, G., & Gjorgjieva, J. (2023). Single spikes drive sequential propagation and routing of activity in a cortical network. eLife, 12: e79928. doi:10.7554/eLife.79928.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://pubmed.ncbi.nlm.nih.gov/36780217/ (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Riquelme, Juan Luis1, 2, Autor
Hemberger, Mike3, Autor
Laurent, Gilles3, Autor                 
Gjorgjieva, Julijana1, 2, Autor           
Affiliations:
1Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Max Planck Society, ou_2461694              
2School of Life Sciences, Technical University of Munich, Freising, Germany., ou_persistent22              
3Neural systems Department, Max Planck Institute for Brain Research, Max Planck Society, ou_2461701              

Inhalt

einblenden:
ausblenden:
Schlagwörter: cortex; network; neuroscience; propagation; routing; sequence; single spike; turtle.
 Zusammenfassung: Single spikes can trigger repeatable firing sequences in cortical networks. The mechanisms that support reliable propagation of activity from such small events and their functional consequences remain unclear. By constraining a recurrent network model with experimental statistics from turtle cortex, we generate reliable and temporally precise sequences from single spike triggers. We find that rare strong connections support sequence propagation, while dense weak connections modulate propagation reliability. We identify sections of sequences corresponding to divergent branches of strongly connected neurons which can be selectively gated. Applying external inputs to specific neurons in the sparse backbone of strong connections can effectively control propagation and route activity within the network. Finally, we demonstrate that concurrent sequences interact reliably, generating a highly combinatorial space of sequence activations. Our results reveal the impact of individual spikes in cortical circuits, detailing how repeatable sequences of activity can be triggered, sustained, and controlled during cortical computations.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-05-032022-12-192023-02-13
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.7554/eLife.79928
PMID: 36780217
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: eLife
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge : eLife Sciences Publications
Seiten: - Band / Heft: 12 Artikelnummer: e79928 Start- / Endseite: - Identifikator: Anderer: URL
ISSN: 2050-084X
CoNE: https://pure.mpg.de/cone/journals/resource/2050-084X