English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
EndNote (UTF-8)
 
DownloadE-Mail
  Reconstructing volcanic radiative forcing since 1990, using a comprehensive emission inventory and spatially resolved sulfur injections from satellite data in a chemistry-climate model

Schallock, J., Brühl, C., Bingen, C., Höpfner, M., Rieger, L., & Lelieveld, J. (2023). Reconstructing volcanic radiative forcing since 1990, using a comprehensive emission inventory and spatially resolved sulfur injections from satellite data in a chemistry-climate model. Atmospheric Chemistry and Physics, 23(2), 1169– -1207. doi:10.5194/acp-23-1169-2023.

Item is

Files

show Files

Locators

hide
Description:
-
OA-Status:
Gold

Creators

hide
 Creators:
Schallock, Jennifer1, Author           
Brühl, Christoph1, Author           
Bingen , Christine, Author
Höpfner, Michael, Author
Rieger, Landon, Author
Lelieveld, Jos1, Author           
Affiliations:
1Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Content

hide
Free keywords: -
 Abstract: This paper presents model simulations of stratospheric aerosols with a focus on explosive volcanic eruptions. Using various (occultation and limb-based) satellite instruments, providing vertical profiles of sulfur dioxide (SO2) and aerosol extinction, we characterized the chemical and radiative influence of volcanic aerosols for the period between 1990 and 2019.

We established an improved and extended volcanic SO2 emission inventory that includes more than 500 explosive volcanic eruptions reaching the upper troposphere and the stratosphere. Each perturbation identified was derived from the satellite data and incorporated as a three-dimensional SO2 plume into a chemistry-climate model without the need for additional assumptions about altitude distribution and eruption duration as needed for a “point source” approach.

The simultaneous measurements of SO2 and aerosol extinction by up to four satellite instruments enabled a reliable conversion of extinction measurements into injected SO2. In the chemistry-climate model, the SO2 from each individual plume was converted into aerosol particles and their optical properties were determined. Furthermore, the aerosol optical depth (AOD) and the instantaneous radiative forcing on climate were calculated online. Combined with model improvements, the results of the simulations are consistent with the observations of the various satellites.

Slight deviations between the observations and model simulations were found for the large volcanic eruption of Pinatubo in 1991 and cases where simultaneous satellite observations were not unique or too sparse. Weak- and medium-strength volcanic eruptions captured in satellite data and the Smithsonian database typically inject about 10 to 50 kt SO2 directly into the upper troposphere/lower stratosphere (UTLS) region or the sulfur species are transported via convection and advection. Our results confirm that these relatively minor eruptions, which occur quite frequently, can nevertheless contribute to the stratospheric aerosol layer and are relevant for the Earth's radiation budget. These minor eruptions cause a total global instantaneous radiative forcing of the order of −0.1 W m−2 at the top of the atmosphere (TOA) compared to a background stratospheric aerosol forcing of about −0.04 W m−2. Medium-strength eruptions injecting about 400 kt SO2 into the stratosphere or accumulation of consecutive smaller eruptions can lead to a total instantaneous forcing of about −0.3 W m−2. We show that it is critical to include the contribution of the extratropical lowermost stratospheric aerosol in the forcing calculations.

Details

hide
Language(s): eng - English
 Dates: 2023-01-23
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/acp-23-1169-2023
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: Atmospheric Chemistry and Physics
  Abbreviation : ACP
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Göttingen : Copernicus Publications
Pages: - Volume / Issue: 23 (2) Sequence Number: - Start / End Page: 1169– - 1207 Identifier: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016