Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

EndNote (UTF-8)
 
DownloadE-Mail
  Nuclear-Order-Induced Quantum Criticality and Heavy-Fermion Superconductivity at Ultra-low Temperatures in YbRh2Si2

Schuberth, E., Wirth, S., & Steglich, F. (2022). Nuclear-Order-Induced Quantum Criticality and Heavy-Fermion Superconductivity at Ultra-low Temperatures in YbRh2Si2. Frontiers in Electronic Materials, 2: 869495, pp. 1-14. doi:10.3389/femat.2022.869495.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Schuberth, Erwin1, Autor
Wirth, Steffen2, Autor           
Steglich, Frank3, Autor           
Affiliations:
1External Organizations, ou_persistent22              
2Steffen Wirth, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863460              
3Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863445              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: The tetragonal heavy-fermion metal YbRh2Si2 orders antiferromagnetically at TN = 70 mK and exhibits an unconventional quantum critical point (QCP) of Kondo-destroying type at BN = 60 mT, for the magnetic field applied within the basal (a, b) plane. Ultra-low-temperature magnetization and heat-capacity measurements at very low fields indicate that the 4f-electronic antiferromagnetic (AF) order is strongly suppressed by a nuclear-dominated hybrid order (“A-phase”) at TA ≤ 2.3 mK, such that quantum critical fluctuations develop at B ≈ 0 (Schuberth et al., Science, 2016, 351, 485–488). This enables the onset of heavy-fermion superconductivity (Tc = 2 mK) which appears to be suppressed by the primary antiferromagnetic order at elevated temperatures. Measurements of the Meissner effect reveal bulk superconductivity, with Tc decreasing under applied field to Tc < 1 mK at B > 20 mT. The observation of a weak but distinct superconducting shielding signal at a temperature as high as 10 mK suggests the formation of insulated random islands with emergent A-phase order and superconductivity. Upon cooling, the shielding signal increases almost linearly in temperature, indicating a growth of the islands which eventually percolate at T ≈ 6.5 mK. Recent electrical-resistivity results by Nguyen et al. (Nat. Commun., 2021, 12, 4341) confirm the existence of superconductivity in YbRh2Si2 at ultra-low temperatures. The combination of the results of <xref ref-type="bibr" rid="B46">Schuberth et al. (2016)</xref> and <xref ref-type="bibr" rid="B32">Nguyen et al. (2021)</xref> at ultra-low temperatures below BN, along with those previously established at higher temperatures in the paramagnetic state, provide compelling evidence that the Kondo-destruction quantum criticality robustly drives unconventional superconductivity.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2022-05-172022-05-17
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.3389/femat.2022.869495
BibTex Citekey: 10.3389/femat.2022.869495
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Frontiers in Electronic Materials
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 2 Artikelnummer: 869495 Start- / Endseite: 1 - 14 Identifikator: ISSN: 2673-9895