Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Numerical-relativity surrogate modeling with nearly extremal black-hole spins

Walker, M., Varma, V., Lovelace, G., & Scheel, M. A. (2023). Numerical-relativity surrogate modeling with nearly extremal black-hole spins. Classical and Quantum Gravity, 40(5): 055003. doi:10.1088/1361-6382/acb3a7.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2208.02927.pdf (Preprint), 614KB
Name:
2208.02927.pdf
Beschreibung:
File downloaded from arXiv at 2023-02-28 12:58
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
Walker_2023_Class._Quantum_Grav._40_055003.pdf (Verlagsversion), 2MB
Name:
Walker_2023_Class._Quantum_Grav._40_055003.pdf
Beschreibung:
Open Acces
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Walker, Marissa, Autor
Varma, Vijay1, Autor           
Lovelace, Geoffrey, Autor
Scheel, Mark A., Autor
Affiliations:
1Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1933290              

Inhalt

einblenden:
ausblenden:
Schlagwörter: General Relativity and Quantum Cosmology, gr-qc
 Zusammenfassung: Numerical relativity (NR) simulations of binary black hole (BBH) systems
provide the most accurate gravitational wave predictions, but at a high
computational cost -- especially when the black holes have nearly extremal
spins (i.e. spins near the theoretical upper limit) or very unequal masses.
Recently, the technique of Reduced Order Modeling (ROM) has enabled the
construction of surrogate models trained on an existing set of NR waveforms.
Surrogate models enable the rapid computation of the gravitational waves
emitted by BBHs. Typically these models are used for interpolation to compute
gravitational waveforms for BBHs with mass ratios and spins within the bounds
of the training set. Because simulations with nearly extremal spins are so
technically challenging, surrogate models almost always rely on training sets
with only moderate spins. In this paper, we explore how well surrogate models
can extrapolate to nearly extremal spins when the training set only includes
moderate spins. For simplicity, we focus on one-dimensional surrogate models
trained on NR simulations of BBHs with equal masses and equal, aligned spins.
We assess the performance of the surrogate models at higher spin magnitudes by
calculating the mismatches between extrapolated surrogate model waveforms and
NR waveforms, by calculating the differences between extrapolated and NR
measurements of the remnant black-hole mass, and by testing how the surrogate
model improves as the training set extends to higher spins. We find that while
extrapolation in this one-dimensional case is viable for current detector
sensitivities, surrogate models for next-generation detectors should use
training sets that extend to nearly extremal spins.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2022-08-042023
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2208.02927
DOI: 10.1088/1361-6382/acb3a7
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Classical and Quantum Gravity
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 40 (5) Artikelnummer: 055003 Start- / Endseite: - Identifikator: -