English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 PreviousNext  
  Neutrino Fast Flavor Pendulum. Part 2: Collisional Damping

Padilla-Gay, I., Tamborra, I., & Raffelt, G. G. (2022). Neutrino Fast Flavor Pendulum. Part 2: Collisional Damping. Physical Review D, 106, 103031. Retrieved from https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2022-126.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Padilla-Gay, Ian1, Author
Tamborra, Irene1, Author
Raffelt, Georg G.1, Author
Affiliations:
1Max Planck Institute for Physics, Max Planck Society and Cooperation Partners, ou_2253650              

Content

show
hide
Free keywords: Astroparticle Physics
 Abstract: In compact astrophysical objects, the neutrino density can be so high that neutrino-neutrino refraction can lead to fast flavor conversion of the kind $\nu_e \bar\nu_e \leftrightarrow \nu_x \bar\nu_x$ with $x=\mu,\tau$, depending on the neutrino angle distribution. Previously, we have shown that in a homogeneous, axisymmetric two-flavor system, these collective solutions evolve in analogy to a gyroscopic pendulum. In flavor space, its deviation from the weak-interaction direction is quantified by a variable $\cos\vartheta$ that moves between $+1$ and $\cos\vartheta_{\rm min}$, the latter following from a linear mode analysis. As a next step, we include collisional damping of flavor coherence, assuming a common damping rate $\Gamma$ for all modes. Empirically we find that the damped pendular motion reaches an asymptotic level of pair conversion $f=A+(1-A)\cos\vartheta_{\rm min}$ (numerically $A\simeq 0.370$) that does not depend on details of the angular distribution (except for fixing $\cos\vartheta_{\rm min}$), the initial seed, nor $\Gamma$. On the other hand, even a small asymmetry between the neutrino and antineutrino damping rates strongly changes this picture and can even enable flavor instabilities in otherwise stable systems. Furthermore, we establish a formal connection with a stationary and inhomogeneous neutrino ensemble, showing that our findings also apply to this system.

Details

show
hide
Language(s):
 Dates: 2022
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
  Abbreviation : Phys.Rev.D
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 106 Sequence Number: - Start / End Page: 103031 Identifier: -