Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Hydrogels with stiffness-degradation spatial patterns control anisotropic 3D cell response

Garrido, C., Garske, D., Thiele, M., Amini, S., Real, S., Duda, G. N., et al. (2023). Hydrogels with stiffness-degradation spatial patterns control anisotropic 3D cell response. Biomaterials Advances, 151: 213423. doi:10.1016/j.bioadv.2023.213423.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 9MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
Raw Data (Forschungsdaten)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Garrido, Claudia1, Autor                 
Garske, Daniela1, Autor           
Thiele, Mario, Autor
Amini, Shahrouz2, Autor                 
Real, Samik, Autor
Duda, Georg N., Autor
Schmidt-Bleek, Katharina, Autor
Cipitria, Amaia1, Autor                 
Affiliations:
1Amaia Cipitria, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2489692              
2Shahrouz Amini, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3217681              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Biomaterials; stiffness; degradation; 3D cell-matrix interaction; anisotropic cell response; cell morphology; image-based quantification tool
 Zusammenfassung: In nature, tissues are patterned, but most biomaterials used in human applications are not. Patterned biomaterials offer the opportunity to mimic spatially segregating biophysical and biochemical properties found in nature. Engineering such properties allows to study cell-matrix interactions in anisotropic matrices in great detail. Here, we developed alginate-based hydrogels with patterns in stiffness and degradation, composed of distinct areas of soft non-degradable (Soft-NoDeg) and stiff degradable (Stiff-Deg) material properties. The hydrogels exhibit emerging patterns in stiffness and degradability over time, taking advantage of dual Diels-Alder covalent crosslinking and UV-mediated peptide crosslinking. The materials were mechanically characterized using rheology for single-phase and surface micro-indentation for patterned materials. 3D encapsulated mouse embryonic fibroblasts (MEFs) allowed to characterize the anisotropic cell-matrix interaction in terms of cell morphology by employing a novel image-based quantification tool. Live/dead staining showed no differences in cell viability but distinct patterns in proliferation, with higher cell number in Stiff-Deg materials at day 14. Patterns of projected cell area became visible already at day 1, with larger values in Soft-NoDeg materials. This was inverted at day 14, when larger projected cell areas were identified in Stiff-Deg. This shift was accompanied by a significant decrease in cell circularity in Stiff-Deg. The control of anisotropic cell morphology by the material patterns was also confirmed by a significant increase in filopodia number and length in Stiff-Deg materials. The novel image-based quantification tool was useful to spatially visualize and quantify the anisotropic cell response in 3D hydrogels with stiffness-degradation spatial patterns. Our results show that patterning of stiffness and degradability allows to control cell anisotropic response in 3D and can be quantified by image-based strategies. This allows a deeper understanding of cell-matrix interactions in a multicomponent material.Competing Interest StatementThe authors have declared no competing interest.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-04-252023
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.bioadv.2023.213423
DOI: 10.1101/2023.01.25.525504
Anderer: FDM, Edmond
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biomaterials Advances
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdan : Elsevier
Seiten: - Band / Heft: 151 Artikelnummer: 213423 Start- / Endseite: - Identifikator: ISSN: 2772-9508

Quelle 2

einblenden:
ausblenden:
Titel: bioRxiv : the preprint server for biology
  Kurztitel : bioRxiv
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cold Spring Harbor, NY : Cold Spring Harbor Laboratory
Seiten: - Band / Heft: - Artikelnummer: 2023.01.25.525504 Start- / Endseite: - Identifikator: ZDB: 2766415-6