Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Chain sliding versus β-sheet formation upon shearing single α-helical coiled coils

Tsirigoni, A.-M., Göktas, M., Atris, Z., Valleriani, A., Vila Verde, A., & Blank, K. G. (2023). Chain sliding versus β-sheet formation upon shearing single α-helical coiled coils. Macromolecular Bioscience, 23(5): 202200563. doi:10.1002/mabi.202200563.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 4MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Tsirigoni, Anna-Maria1, Autor           
Göktas, Melis1, Autor           
Atris, Zeynep1, Autor
Valleriani, Angelo2, Autor           
Vila Verde, Ana, Autor
Blank, Kerstin G.1, Autor                 
Affiliations:
1Kerstin Blank, Mechano(bio)chemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2301698              
2Angelo Valleriani, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3360042              

Inhalt

einblenden:
ausblenden:
Schlagwörter: alpha-beta transition; alpha-helices; beta-sheets; coiled coils; molecular dynamics simulations; protein mechanics; single-molecule force spectroscopy
 Zusammenfassung: Coiled coils (CCs) are key building blocks of biogenic materials and determine their mechanical response to large deformations. Of particular interest is the observation that CC-based materials display a force-induced transition from α-helices to mechanically stronger β-sheets (αβT). Steered molecular dynamics simulations predict that this αβT requires a minimum, pulling speed-dependent CC length. Here, de novo designed CCs with a length between four to seven heptads are utilized to probe if the transition found in natural CCs can be mimicked with synthetic sequences. Using single-molecule force spectroscopy and molecular dynamics simulations, these CCs were mechanically loaded in shear geometry and their rupture forces and structural responses to the applied load were determined. Simulations at the highest pulling speed (0.01 nm ns-1) show the appearance of β-sheet structures for the five- and six-heptad CCs and a concomitant increase in mechanical strength. The αβT is less probable at a lower pulling speed of 0.001 nm ns-1 and is not observed in force spectroscopy experiments. For CCs loaded in shear geometry, the formation of β-sheets competes with interchain sliding. β-sheet formation is only possible in higher-order CC assemblies or in tensile loading geometries where chain sliding and dissociation is prohibited. This article is protected by copyright. All rights reserved

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-03-012023
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1002/mabi.202200563
DOI: 10.5281/zenodo.7713350
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Macromolecular Bioscience
  Kurztitel : Macromol. Biosci.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim : Wiley-VCH
Seiten: - Band / Heft: 23 (5) Artikelnummer: 202200563 Start- / Endseite: - Identifikator: ISSN: 1616-5187