English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  A new combinatorial class of 3-manifold triangulations

Luo, F., & Tillmann, S. (2017). A new combinatorial class of 3-manifold triangulations. Asian Journal of Mathematics, 21(3), 543-570. doi:10.4310/AJM.2017.v21.n3.a7.

Item is

Files

show Files
hide Files
:
Luo-Tillmann_A new combinatorial class of 3-manifold triangulations_2017.pdf (Publisher version), 336KB
 
File Permalink:
-
Name:
Luo-Tillmann_A new combinatorial class of 3-manifold triangulations_2017.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Mathematics, MBMT; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://dx.doi.org/10.4310/AJM.2017.v21.n3.a7 (Publisher version)
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Luo, Feng, Author
Tillmann, Stephan1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Geometric Topology
 Abstract: We define a new combinatorial class of triangulations of closed 3-manifolds, satisfying a weak version of 0-efficiency combined with a weak version of minimality, and study them using twisted squares. As an application, we obtain strong restrictions on the topology of a 3-manifold from the existence of non-smooth maxima of the volume function on the space of circle-valued angle structures.

Details

show
hide
Language(s): eng - English
 Dates: 2017
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1312.5087
DOI: 10.4310/AJM.2017.v21.n3.a7
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Asian Journal of Mathematics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: International Press
Pages: - Volume / Issue: 21 (3) Sequence Number: - Start / End Page: 543 - 570 Identifier: -