English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Bracket width of simple Lie algebras

Dubouloz, A., Kunyavskiĭ, B., & Regeta, A. (2021). Bracket width of simple Lie algebras. Documenta Mathematica, 26, 1601-1627. doi:10.25537/dm.2021v26.1601-1627.

Item is

Files

show Files
hide Files
:
Dubouloz-Kunyavskii-Regeta_Bracket width of simple Lie algebras_2021.pdf (Publisher version), 293KB
Name:
Dubouloz-Kunyavskii-Regeta_Bracket width of simple Lie algebras_2021.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
2102.08674.pdf (Preprint), 292KB
 
File Permalink:
-
Name:
2102.08674.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.25537/dm.2021v26.1601-1627 (Publisher version)
Description:
-
OA-Status:
Gold
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Dubouloz, Adrien, Author
Kunyavskiĭ, Boris1, Author           
Regeta, Andriy1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Geometry, Rings and Algebras
 Abstract: The notion of commutator width of a group, defined as
the smallest number of commutators needed to represent each element
of the derived group as their product, has been extensively studied
over the past decades. In particular, in 1992 Barge and Ghys discov-
ered the first example of a simple group of commutator width greater
than one among groups of diffeomorphisms of smooth manifolds.
We consider a parallel notion of bracket width of a Lie algebra and
present the first examples of simple Lie algebras of bracket width
greater than one. They are found among the algebras of algebraic
vector fields on smooth affine varieties.

Details

show
hide
Language(s): eng - English
 Dates: 2021
 Publication Status: Published online
 Pages: 28
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2102.08674
DOI: 10.25537/dm.2021v26.1601-1627
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Documenta Mathematica
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Deutsche Mathematiker-Vereinigung
Pages: - Volume / Issue: 26 Sequence Number: - Start / End Page: 1601 - 1627 Identifier: -