Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Guidelines for Optimizing Type S Non-Ribosomal Peptide Synthetases

Abbood, N., Effert, J., Bozhüyük, K. A. J., & Bode, H. B. (2023). Guidelines for Optimizing Type S Non-Ribosomal Peptide Synthetases. bioRxiv: the preprint server for biology, doi: 10.1101/2023.03.21.533600.

Item is

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1101/2023.03.21.533600 (Preprint)
Beschreibung:
-
OA-Status:
Grün

Urheber

einblenden:
ausblenden:
 Urheber:
Abbood, Nadya1, Autor           
Effert, Juliana1, Autor           
Bozhüyük, Kenan A. J.1, Autor           
Bode, Helge B.1, Autor                 
Affiliations:
1Natural Product Function and Engineering, Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266308              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Bacterial biosynthetic assembly lines, such as non-ribosomal peptide synthetases (NRPS) and polyketide synthases, are often subject of synthetic biology because they produce a variety of natural products invaluable for modern pharmacotherapy. Acquiring the ability to engineer these biosynthetic assembly lines allows the production of artificial non-ribosomal peptides (NRP), polyketides, and hybrids thereof with new or improved properties. However, traditional bioengineering approaches have suffered for decades from their very limited applicability and, unlike combinatorial chemistry, are stigmatized as inefficient because they cannot be linked to the high-throughput screening platforms of the pharmaceutical industry. Although combinatorial chemistry can generate new molecules cheaper, faster, and in greater numbers than traditional natural product discovery and bioengineering approaches, it does not meet current medical needs because it covers only a limited biologically relevant chemical space. Hence, methods for high-throughput generation of new natural product-like compound libraries could provide a new avenue towards the identification of new lead compounds. To this end, prior to this work, we introduced an artificial synthetic NRPS type, referred to as type S NRPS, to provide a first-of-its-kind bicombinatorial approach to parallelized high-throughput NRP library generation. However, a bottleneck of these first two generations of type S NRPS was a significant drop in production yields. To address this issue, we applied an iterative optimization process that enabled titer increases of up to 55-fold compared to the non-optimized equivalents, restoring them to wild-type levels and beyond.Competing Interest StatementPatents describing the use of SYNZIPs and SNYZIP optimization for NRPS engineering were filed by the Goethe University Frankfurt, the Max-Planck Society, and Myria Biosciences AG. K.A.J.B. and H.B.B. are cofounder and shareholder of Myria Biosciences AG, of which K.A.J.B. is also CSO.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2023-03-21
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: bioRxiv : the preprint server for biology
  Kurztitel : bioRxiv
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: doi: 10.1101/2023.03.21.533600 Start- / Endseite: - Identifikator: ZDB: 2766415-6
CoNE: https://pure.mpg.de/cone/journals/resource/2766415-6