English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  HDR, the last enzyme in the MEP pathway, differently regulates isoprenoid biosynthesis in two woody plants

Krause, T., Wiesinger, P., Gonzalez-Cabanelas, D., Lackus, N., Koellner, T. G., Klüpfel, T., et al. (2023). HDR, the last enzyme in the MEP pathway, differently regulates isoprenoid biosynthesis in two woody plants. Plant Physiology, 191. doi:10.1093/plphys/kiad110.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Krause, Toni1, Author
Wiesinger, Piera1, Author
Gonzalez-Cabanelas, Diego1, Author
Lackus, Nathalie1, Author
Koellner, Tobias G.1, Author
Klüpfel, Thomas2, Author           
Williams, Jonathan2, Author           
Rohwer, Johann1, Author
Gershenzon, Jonathan1, Author
Schmidt, Axel1, Author
Affiliations:
1external, ou_persistent22              
2Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Content

show
hide
Free keywords: -
 Abstract: Dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) serves as the universal C5 precursors of isoprenoid biosynthesis in plants. These compounds are formed by the last step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, catalyzed by (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase (HDR). In this study, we investigated the major HDR isoforms of two woody plant species, Norway spruce (Picea abies) and gray poplar (Populus × canescens), to determine how they regulate isoprenoid formation. Since each of these species has a distinct profile of isoprenoid compounds, they may require different proportions of DMADP and IDP with proportionally more IDP being needed to make larger isoprenoids. Norway spruce contained two major HDR isoforms differing in their occurrence and biochemical characteristics. PaHDR1 produced relatively more IDP than PaHDR2 and it encoding gene was expressed constitutively in leaves, likely serving to form substrate for production of carotenoids, chlorophylls, and other primary isoprenoids derived from a C20 precursor. On the other hand, Norway spruce PaHDR2 produced relatively more DMADP than PaHDR1 and its encoding gene was expressed in leaves, stems, and roots, both constitutively and after induction with the defense hormone methyl jasmonate. This second HDR enzyme likely forms a substrate for the specialized monoterpene (C10), sesquiterpene (C15), and diterpene (C20) metabolites of spruce oleoresin. Gray poplar contained only one dominant isoform (named PcHDR2) that produced relatively more DMADP and the gene of which was expressed in all organs. In leaves, where the requirement for IDP is high to make the major carotenoid and chlorophyll isoprenoids derived from C20 precursors, excess DMADP may accumulate, which could explain the high rate of isoprene (C5) emission. Our results provide new insights into the biosynthesis of isoprenoids in woody plants under conditions of differentially regulated biosynthesis of the precursors IDP and DMADP.

Details

show
hide
Language(s): eng - English
 Dates: 2023-02-22
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000945669900001
DOI: 10.1093/plphys/kiad110
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Plant Physiology
  Other : Plant Physiol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Bethesda, Md. : American Society of Plant Biologists
Pages: 22 Volume / Issue: 191 Sequence Number: - Start / End Page: - Identifier: ISSN: 0032-0889
CoNE: https://pure.mpg.de/cone/journals/resource/991042744294438