Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Action potential-coupled Rho GTPase signaling drives presynaptic plasticity

O'Neil, S. D., Rácz, B., Brown, W. E., Gao, Y., Soderblom, E. J., Yasuda, R., et al. (2021). Action potential-coupled Rho GTPase signaling drives presynaptic plasticity. eLife. Retrieved from https://elifesciences.org/download/aHR0cHM6Ly9jZG4uZWxpZmVzY2llbmNlcy5vcmcvYXJ0aWNsZXMvNjM3NTYvZWxpZmUtNjM3NTYtdjEucGRmP2Nhbm9uaWNhbFVyaT1odHRwczovL2VsaWZlc2NpZW5jZXMub3JnL2FydGljbGVzLzYzNzU2/elife-63756-v1.pdf?_hash=qG4Ve92hr%2FJvFYwuhStsKRtDaXLwUSRE5wgNyxq9SvQ%3D.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel
Alternativer Titel : eLife

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
O'Neil, Shataakshi Dube, Autor
Rácz, Bence, Autor
Brown, Walter Evan, Autor
Gao, Yudong, Autor
Soderblom, Erik J., Autor
Yasuda, Ryohei1, Autor
Soderling, Scott H., Autor
Affiliations:
1Max Planck Florida Institute for Neuroscience, Max Planck Society, One Max Planck Way, Jupiter FL 33458, USA, ou_1950288              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Animals, Action Potentials, Actins, Cytoskeleton, Neuronal Plasticity, Synapses, Hippocampus, Mice, Neuropeptides, Synaptic Vesicles, cytoskeleton, Calcium, mouse, neuroscience, short-term plasticity, proteomics, rho GTP-Binding Proteins, 2pFLIM, Actin Cytoskeleton, cell biology, presynapse, Proteomics, Rac1, rac1 GTP-Binding Protein
 Zusammenfassung: In contrast to their postsynaptic counterparts, the contributions of activity-dependent cytoskeletal signaling to presynaptic plasticity remain controversial and poorly understood. To identify and evaluate these signaling pathways, we conducted a proteomic analysis of the presynaptic cytomatrix using in vivo biotin identification (iBioID). The resultant proteome was heavily enriched for actin cytoskeleton regulators, including Rac1, a Rho GTPase that activates the Arp2/3 complex to nucleate branched actin filaments. Strikingly, we find Rac1 and Arp2/3 are closely associated with synaptic vesicle membranes in adult mice. Using three independent approaches to alter presynaptic Rac1 activity (genetic knockout, spatially restricted inhibition, and temporal optogenetic manipulation), we discover that this pathway negatively regulates synaptic vesicle replenishment at both excitatory and inhibitory synapses, bidirectionally sculpting short-term synaptic depression. Finally, we use two-photon fluorescence lifetime imaging to show that presynaptic Rac1 activation is coupled to action potentials by voltage-gated calcium influx. Thus, this study uncovers a previously unrecognized mechanism of actin-regulated short-term presynaptic plasticity that is conserved across excitatory and inhibitory terminals. It also provides a new proteomic framework for better understanding presynaptic physiology, along with a blueprint of experimental strategies to isolate the presynaptic effects of ubiquitously expressed proteins.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2021
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: eLife
  Alternativer Titel : Elife
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: e63756 Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: ISBN: 2050-084X