非表示:
キーワード:
-
要旨:
Stem cell regeneration is crucial for both cell turnover and tissue healing in multicellular organisms. In Arabidopsis roots, a reduced group of cells known as the quiescent center (QC) act as a cell reservoir for surrounding stem cells during both normal growth and in response to external damage. Although cells of the QC have a very low mitotic activity, plant hormones such as brassinosteroids (BRs) can promote QC divisions. Here, we used a tissue-specific strategy to investigate the spatial signaling requirements of BR-mediated QC divisions. We generated stem cell niche-specific receptor knockout lines by placing an artificial microRNA against BRI1 (BRASSINOSTEROID INSENSITIVE 1) under the control of the QC-specific promoter WOX5. Additionally, QC-specific knock-in lines for BRI1 and its downstream transcription factor BES1 (BRI1-EMS-SUPPRESOR1) were also created using the WOX5 promoter. By analyzing the roots of these lines, we show that BES1-mediated signaling cell-autonomously promotes QC divisions, that BRI1 is essential for sensing nearby inputs and triggering QC divisions and that DNA damage promotes BR-dependent paracrine signaling in the stem cell niche as a prerequisite to stem cell replenishment.