English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Interpreting ultrafast electron transfer on surfaces with a converged first-principles Newns–Anderson chemisorption function

Ghan, S., Diesen, E., Kunkel, C., Reuter, K., & Oberhofer, H. (2023). Interpreting ultrafast electron transfer on surfaces with a converged first-principles Newns–Anderson chemisorption function. The Journal of Chemical Physics, 158(23): 234103. doi:10.1063/5.0151009.

Item is

Files

show Files
hide Files
:
2303.11412.pdf (Preprint), 8MB
Name:
2303.11412.pdf
Description:
File downloaded from arXiv at 2023-04-04 13:24
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
234103_1_5.0151009.pdf (Publisher version), 8MB
Name:
234103_1_5.0151009.pdf
Description:
-
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2023
Copyright Info:
AIP
License:
JCP Editors’ Choice 2023

Locators

show

Creators

show
hide
 Creators:
Ghan, Simiam1, Author                 
Diesen, Elias1, Author                 
Kunkel, Christian1, Author                 
Reuter, Karsten1, Author                 
Oberhofer, Harald, Author
Affiliations:
1Theory, Fritz Haber Institute, Max Planck Society, ou_634547              

Content

show
hide
Free keywords: Physics, Chemical Physics, physics.chem-ph
 Abstract: We study the electronic coupling between an adsorbate and a metal surface by calculating tunneling matrix elements Hsb directly from first principles. For this we employ a projection of the Kohn-Sham Hamiltonian upon a diabatic basis using a version of the popular Projection-Operator Diabatization approach. An appropriate integration of couplings over the Brillouin zone allows the first calculation of a size-convergent Newns-Anderson chemisorption function, a coupling-weighted density of states measuring the line broadening of an adsorbate frontier state upon adsorption. This broadening corresponds to the experimentally-observed lifetime of an electron in the state, which we confirm for core-excited Ar* 2p-13/24s atoms on a number of transition metal (TM) surfaces. Yet, beyond just lifetimes, the chemisorption function is highly interpretable and encodes rich information on orbital phase interactions on the surface. The model thus captures and elucidates key aspects of the electron transfer process. Finally, a decomposition into angular momentum components reveals the hitherto unresolved role of the hybridized d-character of the TM surface in the resonant electrontransfer, and elucidates the coupling of the adsorbate to the surface bandsover the entire energy scale.

Details

show
hide
Language(s): eng - English
 Dates: 2023-03-202023-03-172023-05-222023-06-152023-06-21
 Publication Status: Issued
 Pages: 13
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2303.11412
DOI: 10.1063/5.0151009
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Chemical Physics
  Abbreviation : J. Chem. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Institute of Physics
Pages: 13 Volume / Issue: 158 (23) Sequence Number: 234103 Start / End Page: - Identifier: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226