ausblenden:
Schlagwörter:
-
Zusammenfassung:
In high-dimensional settings, where the number of features p is typically much larger than the number of samples n, methods which can systematically examine arbitrary combinations of features, a huge 2^p-dimensional space, have recently begun to be explored. However, none of the current methods is able to assess the association between feature combinations and a target variable while conditioning on a categorical covariate, in order to correct for potential confounding effects. We propose the Fast Automatic Conditional Search (FACS) algorithm, a significant discriminative itemset mining method which conditions on categorical covariates and only scales as O(k log k), where k is the number of states of the categorical covariate. Based on the Cochran-Mantel-Haenszel Test, FACS demonstrates superior speed and statistical power on simulated and real-world datasets compared to the state of the art, opening the door to numerous applications in biomedicine.