Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Finding significant combinations of features in the presence of categorical covariates

Papaxanthos, L., Llinares-López, F., Bodenham, D., & Borgwardt, K. (2016). Finding significant combinations of features in the presence of categorical covariates. Advances in Neural Information Processing Systems 29 (NIPS 2016), 2271-2279.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe
Beschreibung:
GitHub
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Papaxanthos, Laetitia, Autor
Llinares-López, Felipe, Autor
Bodenham, Dean, Autor
Borgwardt, Karsten1, Autor                 
Affiliations:
1ETH Zürich, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In high-dimensional settings, where the number of features p is typically much larger than the number of samples n, methods which can systematically examine arbitrary combinations of features, a huge 2^p-dimensional space, have recently begun to be explored. However, none of the current methods is able to assess the association between feature combinations and a target variable while conditioning on a categorical covariate, in order to correct for potential confounding effects. We propose the Fast Automatic Conditional Search (FACS) algorithm, a significant discriminative itemset mining method which conditions on categorical covariates and only scales as O(k log k), where k is the number of states of the categorical covariate. Based on the Cochran-Mantel-Haenszel Test, FACS demonstrates superior speed and statistical power on simulated and real-world datasets compared to the state of the art, opening the door to numerous applications in biomedicine.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 20162016
 Publikationsstatus: Erschienen
 Seiten: 2271-​2279
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advances in Neural Information Processing Systems 29 (NIPS 2016)
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 2271 - 2279 Identifikator: -