Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Weisfeiler-Lehman Graph Kernels

Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v., Mehlhorn, K., & Borgwardt, K. (2011). Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 12(77), 2539-2561.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://jmlr.org/papers/v12/shervashidze11a.html (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Shervashidze, Nino, Autor
Schweitzer, Pascal, Autor
Leeuwen, Erik Jan van, Autor
Mehlhorn, Kurt, Autor
Borgwardt, Karsten1, Autor                 
Affiliations:
1Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3375790              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In this article, we propose a family of efficient kernels for large graphs with discrete node labels. Key to our method is a rapid feature extraction scheme based on the Weisfeiler-Lehman test of isomorphism on graphs. It maps the original graph to a sequence of graphs, whose node attributes capture topological and label information. A family of kernels can be defined based on this Weisfeiler-Lehman sequence of graphs, including a highly efficient kernel comparing subtree-like patterns. Its runtime scales only linearly in the number of edges of the graphs and the length of the Weisfeiler-Lehman graph sequence. In our experimental evaluation, our kernels outperform state-of-the-art graph kernels on several graph classification benchmark data sets in terms of accuracy and runtime. Our kernels open the door to large-scale applications of graph kernels in various disciplines such as computational biology and social network analysis.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 20112011
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISSN: 1533-7928
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Machine Learning Research
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 12 (77) Artikelnummer: - Start- / Endseite: 2539 - 2561 Identifikator: -