Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Ultralow energy domain wall device for spin-based neuromorphic computing

Kumar, D., Chung, H. J., Chan, J., Jin, T., Ter Lim, S., Parkin, S. S. P., et al. (2023). Ultralow energy domain wall device for spin-based neuromorphic computing. ACS Nano, 17(7), 6261-6274. doi:10.1021/acsnano.2c09744.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
acsnano.2c09744.pdf (Verlagsversion), 6MB
 
Datei-Permalink:
-
Name:
acsnano.2c09744.pdf
Beschreibung:
Archivkopie
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1021/acsnano.2c09744 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Kumar, Durgesh1, Autor
Chung, Hong Jing1, Autor
Chan, JianPeng1, Autor
Jin, Tianli1, Autor
Ter Lim, Sze1, Autor
Parkin, Stuart S. P.2, Autor                 
Sbiaa, Rachid1, Autor
Piramanayagam, S. N.1, Autor
Affiliations:
1external, ou_persistent22              
2Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society, ou_3287476              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Neuromorphic computing (NC) is gaining wide acceptance as a potential technology to achieve low-power intelligent devices. To realize NC, researchers investigate various types of synthetic neurons and synaptic devices, such as memristors and spintronic devices. In comparison, spintronics-based neurons and synapses have potentially higher endurance. However, for realizing low-power devices, domain wall (DW) devices that show DW motion at low energies─typically below pJ/bit─are favored. Here, we demonstrate DW motion at current densities as low as 106 A/m2 by engineering the β-W spin–orbit coupling (SOC) material. With our design, we achieve ultralow pinning fields and current density reduction by a factor of 104. The energy required to move the DW by a distance of about 18.6 μm is 0.4 fJ, which translates into the energy consumption of 27 aJ/bit for a bit-length of 1 μm. With a meander DW device configuration, we have established a controlled DW motion for synapse applications and have shown the direction to make ultralow energy spin-based neuromorphic elements.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2023-03-212023-04-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000956101800001
DOI: 10.1021/acsnano.2c09744
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Nano
  Kurztitel : ACS Nano
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 17 (7) Artikelnummer: - Start- / Endseite: 6261 - 6274 Identifikator: ISSN: 1936-0851
CoNE: https://pure.mpg.de/cone/journals/resource/1936-0851