English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Necessary and sufficient conditions for causal feature selection in time series with latent common causes

Mastakouri, A. A., Schölkopf, B., & Janzing, D. (2021). Necessary and sufficient conditions for causal feature selection in time series with latent common causes. In M. Meila, & T. Zhang (Eds.), Proceedings of the 38th International Conference on Machine Learning (ICML 2021) (pp. 7502-7511). PMLR. Retrieved from https://proceedings.mlr.press/v139/mastakouri21a.html.

Item is

Basic

show hide
Genre: Conference Paper

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Miscellaneous
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Mastakouri, Atalanti A.1, Author
Schölkopf, Bernhard1, 2, Author                 
Janzing, Dominik1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_1497647              

Content

show
hide
Free keywords: Abt. Schölkopf
 Abstract: -

Details

show
hide
Language(s): eng - English
 Dates: 2021-07
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: MasSchJan21
URI: https://proceedings.mlr.press/v139/mastakouri21a.html
arXiv: 2005.08543
 Degree: -

Event

show
hide
Title: 38th International Conference on Machine Learning (ICML 2021)
Place of Event: Online
Start-/End Date: 2021-07-18 - 2021-07-24

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the 38th International Conference on Machine Learning (ICML 2021)
Source Genre: Proceedings
 Creator(s):
Meila, Marina1, Editor
Zhang, Tong1, Editor
Affiliations:
1 External Organizations, ou_persistent22            
Publ. Info: PMLR
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 7502 - 7511 Identifier: URI: https://proceedings.mlr.press/v139/

Source 2

show
hide
Title: Proceedings of Machine Learning Research
  Abbreviation : PMLR
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: PMLR
Pages: - Volume / Issue: 139 Sequence Number: - Start / End Page: - Identifier: URI: https://proceedings.mlr.press/
ISSN: 2640-3498