日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Ultrafast Electron Dynamics in Quasi-two-dimensional Quantum Materials

Maklar, J. (2023). Ultrafast Electron Dynamics in Quasi-two-dimensional Quantum Materials. PhD Thesis, Freie Universität, Berlin.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000D-1AF3-4 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000D-1AF4-3
資料種別: 学位論文

ファイル

表示: ファイル
非表示: ファイル
:
Dissertation_Maklar.pdf (全文テキスト(全般)), 16MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-000D-1AF5-2
ファイル名:
Dissertation_Maklar.pdf
説明:
-
OA-Status:
Miscellaneous
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Maklar, Julian1, 著者           
Rettig, Laurenz1, 監修者           
Weinelt, Martin, 監修者
所属:
1Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              

内容説明

表示:
非表示:
キーワード: -
 要旨: Quantum materials are solids with tantalizing properties arising from special symmetry, dimensionality, topology, and many-body interactions between elementary degrees of freedom (charge, spin, orbital, and lattice). They are host to fascinating emergent phenomena such as unconventional superconductivity, Mott transitions, charge density waves (CDWs), and topologically-protected electronic states, and hold promise for revolutionizing electricity generation and distribution, (quantum) computing, and data storage. Gaining a microscopic understanding of quantum materials to experimentally realize and control many-body phases is one of the overarching goals of modern condensed-matter physics. A promising pathway to fulfilling this goal are ultrashort optical excitations. Tracking the response of a broken-symmetry state after perturbation by a light pulse grants access to the relevant many-body interactions governing the emergence of equilibrium quantum states. Additionally, the interaction of quantum materials with light can induce novel emergent phenomena by steering a system towards specific transient or metastable states, facilitating control over additional functionalities within the light-enriched phase diagram. This thesis explores the electronic structure and ultrafast dynamics of several single-layer and layered quasi-2D quantum materials using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES). We first establish a novel time-of-flight-based photoelectron detector for trARPES, a momentum microscope, and benchmark its performance against the widely used hemispherical analyzers. Next, we utilize the complementary nature of both detectors to characterize the electronic nonequilibrium properties of a novel 2D topological insulator, bismuthene. We map the transiently occupied conduction band after photoexcitation, observe faint signatures of topological edge states within the large fundamental bulk band gap, and track the full relaxation pathway of hot photocarriers. Next, using trARPES in combination with a complementary time-resolved structural probe, we investigate the dynamics of a prototypical layered CDW compound, TbTe3, after optical excitation. Tracking the system's order parameter during the photoinduced CDW melting and recovery reveals a surprising reemergence of CDW order at elevated electronic temperatures far greater than the thermal critical temperature, which we attribute to strong nonequilibrium between coupled electronic and lattice degrees of freedom. Additionally, we show how changes of the CDW energy gap during the CDW-to-metal transition can lead to a transient modulation of the relaxation rates of excited high-energy photocarriers. Theoretical calculations based on a nonequilibrium Green's function formalism reveal the critical role of the phase space of electron-electron scattering and the interplay of elementary interactions and the electronic band structure. Lastly, we study the ultrafast nonthermal pathway to a long-lived metastable quantum state in bulk 1T-TaS2 after optical excitation. Utilizing a double-pulse excitation of a vibrational CDW coherence, we demonstrate a high degree of control over the phase transition, laying the basis for actively controlling macroscopic material properties on ultrafast timescales. The thesis concludes with an outlook on future research of quantum materials enabled by time-resolved momentum microscopy.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2023-04-17
 出版の状態: 受理 / 印刷中
 ページ: xi, 144
 出版情報: Berlin : Freie Universität
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.17169/refubium-38780
URI: https://refubium.fu-berlin.de/handle/fub188/39064
URN: urn:nbn:de:kobv:188-refubium-39064-6
 学位: 博士号 (PhD)

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物

表示: