English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Asparagine uptake: a cellular strategy of Methylocystis to combat severe salt stress

Guo, K., Glatter, T., Paczia, N., & Liesack, W. (2023). Asparagine uptake: a cellular strategy of Methylocystis to combat severe salt stress. Applied and Environmental Microbiology, 89(6): e0011323. doi:10.1128/aem.00113-23.

Item is

Files

show Files

Locators

show
hide
Locator:
https://doi.org/10.1128/aem.00113-23 (Publisher version)
Description:
Verlagsversion
OA-Status:
Hybrid

Creators

show
hide
 Creators:
Guo, Kangli1, Author
Glatter, Timo2, Author                 
Paczia, Nicole3, Author                 
Liesack, Werner1, Author                 
Affiliations:
1Department-Independent Research Group Methanotrophic Bacteria, and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266274              
2Core Facility Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266266              
3Core Facility Metabolomics and small Molecules Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266267              

Content

show
hide
Free keywords: -
 Abstract: Methylocystis spp. are known to have a low salt tolerance (≤1.0% NaCl). Therefore, we tested various amino acids and other well-known osmolytes for their potential to act as an osmoprotectant under otherwise growth-inhibiting NaCl conditions. Adjustment of the medium to 10 mM asparagine had the greatest osmoprotective effect under severe salinity (1.50% NaCl), leading to partial growth recovery of strain SC2. The intracellular concentration of asparagine increased to 264 ± 57 mM, with a certain portion hydrolyzed to aspartate (4.20 ± 1.41 mM). In addition to general and oxidative stress responses, the uptake of asparagine specifically induced major proteome rearrangements related to the KEGG level 3 categories of “methane metabolism,” “pyruvate metabolism,” “amino acid turnover,” and “cell division.” In particular, various proteins involved in cell division (e.g., ChpT, CtrA, PleC, FtsA, FtsH1) and peptidoglycan synthesis showed a positive expression response. Asparagine-derived 13C-carbon was incorporated into nearly all amino acids. Both the exometabolome and the 13C-labeling pattern suggest that in addition to aspartate, the amino acids glutamate, glycine, serine, and alanine, but also pyruvate and malate, were most crucially involved in the osmoprotective effect of asparagine, with glutamate being a major hub between the central carbon and amino acid pathways. In summary, asparagine induced significant proteome rearrangements, leading to major changes in central metabolic pathway activity and the sizes of free amino acid pools. In consequence, asparagine acted, in part, as a carbon source for the growth recovery of strain SC2 under severe salinity.
IMPORTANCE Methylocystis spp. play a major role in reducing methane emissions into the atmosphere from methanogenic wetlands. In addition, they contribute to atmospheric methane oxidation in upland soils. Although these bacteria are typical soil inhabitants, Methylocystis spp. are thought to have limited capacity to acclimate to salt stress. This called for a thorough study into potential osmoprotectants, which revealed asparagine as the most promising candidate. Intriguingly, asparagine was taken up quantitatively and acted, at least in part, as an intracellular carbon source under severe salt stress. The effect of asparagine as an osmoprotectant for Methylocystis spp. is an unexpected finding. It may provide Methylocystis spp. with an ecological advantage in wetlands, where these methanotrophs colonize the roots of submerged vascular plants. Collectively, our study offers a new avenue into research on compounds that may increase the resilience of Methylocystis spp. to environmental change.

Details

show
hide
Language(s): eng - English
 Dates: 2023-05-15
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Applied and Environmental Microbiology
  Other : Appl. Environ. Microbiol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: American Society for Microbiology (ASM)
Pages: - Volume / Issue: 89 (6) Sequence Number: e0011323 Start / End Page: - Identifier: ISSN: 0099-2240
CoNE: https://pure.mpg.de/cone/journals/resource/954927519600