Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Inducing Lipid Domains in Membranes by Self-Assembly of DNA Origami

Kanwa, N., Gavrilovic, S., Brueggenthies, G. A., Qutbuddin, Y., & Schwille, P. (2023). Inducing Lipid Domains in Membranes by Self-Assembly of DNA Origami. Advanced Materials Interfaces, 10(15): 2202500. doi:10.1002/admi.202202500.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kanwa, Nishu1, Autor           
Gavrilovic, Svetozar1, 2, Autor           
Brueggenthies, Gereon A.1, Autor
Qutbuddin, Yusuf1, Autor
Schwille, Petra1, Autor           
Affiliations:
1Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565169              
2IMPRS-ML: Martinsried, Max Planck Institute of Biochemistry, Max Planck Society, ou_3531125              

Inhalt

einblenden:
ausblenden:
Schlagwörter: PHASE-SEPARATION; FLUORESCENCE CORRELATION; TERNARY MIXTURES; GIANT VESICLES; FOLDING DNA; RAFTS; CHOLESTEROL; MODEL; NANOSTRUCTURES; ORGANIZATIONChemistry; Materials Science; DNA origami; lipid membranes; phase separation; self-assembly;
 Zusammenfassung: Self-assembly of biological molecules and structures is a fundamental property of life. Whereas most biological functions are based on self-assembled proteins and protein complexes, the self-assembly of lipids is important for the spatial organization of heterogeneous cellular reaction environments and to catalyze cooperative interactions on/with membranes. Lipid domains or "rafts", which are known to selectively recruit proteins, play an important functional role in sorting and trafficking of membrane components between subcellular organelles. However, how the recruitment and interactions of proteins in turn contributes to the formation and turnover of these structures has not been systematically addressed, due to the large variety in membrane-protein features and their spatiotemporal dynamics. The small size and transient nature of lipid domains adds to the complexity in visualizing them in living cells. Here, DNA origami is presented as a programmable tool to mimic protein clustering and assembly on membranes and illustrate how nanometer sized lipid domains coalesce into visible domains upon origami self-assembly in defined patterns. Hence, the local membrane composition can be efficiently regulated by the self-assembly of peripheral membrane binders. This reinforces the hypothesis that lipid rafts in cells occur as a result of membrane-protein interactions and, in particular, protein self-assembly.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-05-25
 Publikationsstatus: Erschienen
 Seiten: 10
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000971338100001
DOI: 10.1002/admi.202202500
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Materials Interfaces
  Kurztitel : Adv. Mater. Interfaces
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim : Wiley-VCH
Seiten: - Band / Heft: 10 (15) Artikelnummer: 2202500 Start- / Endseite: - Identifikator: ISSN: 2196-7350
CoNE: https://pure.mpg.de/cone/journals/resource/2196-7350