Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Machine-guided path sampling to discover mechanisms of molecular self-organization

Jung, H., Covino, R., Arjun, A., Leitold, C., Dellago, C., Bolhuis, P. G., et al. (2023). Machine-guided path sampling to discover mechanisms of molecular self-organization. Nature Computational Science, 3(4), 334-345. doi:10.1038/s43588-023-00428-z.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
Link (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Jung, Hendrik1, Autor                 
Covino, Roberto2, Autor
Arjun, A.3, Autor
Leitold, Christian4, Autor
Dellago, Christoph4, Autor
Bolhuis, Peter G.3, Autor
Hummer, Gerhard1, 5, Autor                 
Affiliations:
1Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society, ou_2068292              
2Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany, ou_persistent22              
3van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands, ou_persistent22              
4Faculty of Physics, University of Vienna, Vienna, Austria, ou_persistent22              
5Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Chemical physics, Computational biophysics, Statistical physics
 Zusammenfassung: Molecular self-organization driven by concerted many-body interactions produces the ordered structures that define both inanimate and living matter. Here we present an autonomous path sampling algorithm that integrates deep learning and transition path theory to discover the mechanism of molecular self-organization phenomena. The algorithm uses the outcome of newly initiated trajectories to construct, validate and—if needed—update quantitative mechanistic models. Closing the learning cycle, the models guide the sampling to enhance the sampling of rare assembly events. Symbolic regression condenses the learned mechanism into a human-interpretable form in terms of relevant physical observables. Applied to ion association in solution, gas-hydrate crystal formation, polymer folding and membrane-protein assembly, we capture the many-body solvent motions governing the assembly process, identify the variables of classical nucleation theory, uncover the folding mechanism at different levels of resolution and reveal competing assembly pathways. The mechanistic descriptions are transferable across thermodynamic states and chemical space.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-02-152023-03-102023-04-24
 Publikationsstatus: Online veröffentlicht
 Seiten: 12
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s43588-023-00428-z
BibTex Citekey: jung_machine-guided_2023
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Computational Science
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 3 (4) Artikelnummer: - Start- / Endseite: 334 - 345 Identifikator: ISSN: 2662-8457