Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2

Klingmüller, K., & Lelieveld, J. (2023). Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2. Geoscientific Model Development, 16(10), 3013-3028. doi:10.5194/gmd-16-3013-2023.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:
Gold

Urheber

ausblenden:
 Urheber:
Klingmüller, Klaus1, Autor           
Lelieveld, Jos1, Autor           
Affiliations:
1Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Aeolian dust has significant impacts on climate,
public health, infrastructure and ecosystems. Assessing dust
concentrations and the impacts is challenging because the
emissions depend on many environmental factors and can
vary greatly with meteorological conditions. We present
a data-driven aeolian dust scheme that combines machine
learning components and physical equations to predict at-
mospheric dust concentrations and quantify the sources. The
numerical scheme was trained to reproduce dust aerosol op-
tical depth retrievals by the Infrared Atmospheric Sounding
Interferometer on board the MetOp-A satellite. The input
parameters included meteorological variables from the fifth-
generation atmospheric reanalysis of the European Centre for
Medium-Range Weather Forecasts. The trained dust scheme
can be applied as an emission submodel to be used in cli-
mate and Earth system models, which is reproducibly de-
rived from observational data so that a priori assumptions
and manual parameter tuning can be largely avoided. We
compared the trained emission submodel to a state-of-the-
art emission parameterisation, showing that it substantially
improves the representation of aeolian dust in the global at-
mospheric chemistry–climate model EMAC.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2023-05-31
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.5194/gmd-16-3013-2023
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Geoscientific Model Development
  Andere : Geosci. Model Dev.
  Kurztitel : GMD
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 16 (10) Artikelnummer: - Start- / Endseite: 3013 - 3028 Identifikator: ISSN: 1991-959X
CoNE: https://pure.mpg.de/cone/journals/resource/1991-959X