Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Turning large language models into cognitive models

Binz, M., & Schulz, E. (2024). Turning large language models into cognitive models. In Twelfth International Conference on Learning Representations (ICLR 2024).

Item is

Basisdaten

ausblenden:
Genre: Konferenzbeitrag

Externe Referenzen

ausblenden:
externe Referenz:
https://openreview.net/pdf?id=eiC4BKypf1 (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Binz, M1, Autor                 
Schulz, E1, Autor           
Affiliations:
1Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3189356              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Large language models are powerful systems that excel at many tasks, ranging from translation to mathematical reasoning. Yet, at the same time, these models often show unhuman-like characteristics. In the present paper, we address this gap and ask whether large language models can be turned into cognitive models. We find that -- after finetuning them on data from psychological experiments -- these models offer accurate representations of human behavior, even outperforming traditional cognitive models in two decision-making domains. In addition, we show that their representations contain the information necessary to model behavior on the level of individual subjects. Finally, we demonstrate that finetuning on multiple tasks enables large language models to predict human behavior in a previously unseen task. Taken together, these results suggest that large, pre-trained models can be adapted to become generalist cognitive models, thereby opening up new research directions that could transform cognitive psychology and the behavioral sciences as a whole.

Details

ausblenden:
Sprache(n):
 Datum: 2024-05
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: Twelfth International Conference on Learning Representations (ICLR 2024)
Veranstaltungsort: Wien, Austria
Start-/Enddatum: 2024-05-07 - 2024-05-11

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Twelfth International Conference on Learning Representations (ICLR 2024)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 18 Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -