English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ultrafast quasiparticle dynamics and the role of screening in WS2 monolayers

Calati, S. (2022). Ultrafast quasiparticle dynamics and the role of screening in WS2 monolayers. PhD Thesis, Humboldt Universität zu, Berlin.

Item is

Files

show Files
hide Files
:
dissertation_calati_stefano.pdf (Any fulltext), 9MB
Name:
dissertation_calati_stefano.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2022
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Calati, Stefano1, Author           
Stähler, Julia1, Referee           
Benson, Oliver, Referee
Wolf, Martin1, Referee                 
Affiliations:
1Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              

Content

show
hide
Free keywords: -
 Abstract: The optical properties of transition metal dichalcogenides (TMDC) are dominated by excitons, due to quantum confinement and reduced screening characteristic of their 2D nature. Exactly the screening of the Coulomb interaction has a fundamental role in determining the steady-state and dynamic properties of such materials. Time-resolved optical spectroscopies are a fundamental tool to investigate the phenomena governing the non-equilibrium physics of TMDC materials. Nevertheless, the quantitative role of the screening in the non-equilibrium response of the TMDC is yet to be understood. I investigate monolayers WS2 placed on various substrates with time-resolved transmittance/reflectance contrast. I report a formalism that allows the reliable comparison of the exciton dynamic response independently of sample, substrate and measurement technique. With this formalism, the pump-photon energy and fluence-dependent exciton peak shift and broadening are extracted and reproduced using a basic two/three-level model. Through this model the competition of quasiparticle dynamic screening, scattering and thermal effects was unravelled. The broadening is governed by QFC-exciton (exciton-exciton) scattering when QFC (excitons) are present in the system. Furthermore, QFC (excitons) induce a global red-(blue-)shift of the exciton resonance, reproduced with an effective QFC (excitons) dynamic screening-induced bandgap renormalization (binding energy reduction). Finally, the static screening influence on the non-equilibrium exciton response is addressed. Scattering and QFC dynamic screening are unaffected in different dielectric environments. On the contrary, the exciton dynamic screening is enhanced for higher substrate permittivity and possibly due to a higher degree of delocalization of the exciton. Ultimately, this thesis contributes to a comprehensive picture of the non-equilibrium dynamics and the role of screening in TMDC.

Details

show
hide
Language(s): eng - English
 Dates: 2022-11-24
 Publication Status: Accepted / In Press
 Pages: vii, 158
 Publishing info: Berlin : Humboldt Universität zu
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.18452/26438
URI: http://edoc.hu-berlin.de/18452/27330
URN: urn:nbn:de:kobv:11-110-18452/27330-3
 Degree: PhD

Event

show

Legal Case

show

Project information

show

Source

show