English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Loxodromic elements in big mapping class groups via the Hooper-Thurston-Veech construction

Morales, I., & Valdez, F. (2022). Loxodromic elements in big mapping class groups via the Hooper-Thurston-Veech construction. Algebraic & Geometric Topology, 22(8), 3809-3854. doi:10.2140/agt.2022.22.3809.

Item is

Files

show Files
hide Files
:
2003.00102.pdf (Preprint), 585KB
Name:
2003.00102.pdf
Description:
File downloaded from arXiv at 2023-06-20 07:54
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Morales-Valdez_Loxodromic elements in big mapping class groups_2022.pdf (Publisher version), 42MB
Name:
Morales-Valdez_Loxodromic elements in big mapping class groups_2022.pdf
Description:
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer Allianz- bzw. Nationallizenz frei zugänglich. / This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence respectively.
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.2140/agt.2022.22.3809 (Publisher version)
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Morales, Israel1, Author           
Valdez, Ferrán1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Geometric Topology, Dynamical Systems
 Abstract: Let $S$ be an infinite-type surface and $p\in S$. We show that the Thurston-Veech construction for pseudo-Anosov elements, adapted for infinite-type surfaces, produces infinitely many loxodromic elements for the action of $Mod(S;p)$ on the loop graph $L(S;p)$ that do not leave any finite-type subsurface $S'\subset S$ invariant. Moreover, in the language of Bavard-Walker, Thurston-Veech's construction produces loxodromic elements of any weight. As a consequence of Bavard and Walker's work, any subgroup of $Mod(S;p)$ containing two "Thurston-Veech loxodromics" of different weight has an infinite-dimensional space of non-trivial quasimorphisms.

Details

show
hide
Language(s): eng - English
 Dates: 2022
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2003.00102
DOI: 10.2140/agt.2022.22.3809
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Algebraic & Geometric Topology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Mathematical Sciences Publishers (MSP)
Pages: - Volume / Issue: 22 (8) Sequence Number: - Start / End Page: 3809 - 3854 Identifier: -