Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Exploring alternative pathways for the in vitro establishment of the HOPAC cycle for synthetic CO2 fixation

McLean, R., Schwander, T., Diehl, C., Cortina, N. S., Paczia, N., Zarzycki, J., et al. (2023). Exploring alternative pathways for the in vitro establishment of the HOPAC cycle for synthetic CO2 fixation. Science Advances, 9(24): eadh4299. doi:10.1126/sciadv.adh4299.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel
Alternativer Titel : Science Advances

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1126/sciadv.adh4299 (Verlagsversion)
Beschreibung:
Verlagsversion
OA-Status:
Gold

Urheber

einblenden:
ausblenden:
 Urheber:
McLean, Richard1, Autor           
Schwander, Thomas1, Autor           
Diehl, Christoph1, Autor           
Cortina, Nina Socorro1, Autor           
Paczia, Nicole2, Autor                 
Zarzycki, Jan1, Autor           
Erb, Tobias J.1, Autor                 
Affiliations:
1Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266303              
2Core Facility Metabolomics and small Molecules Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266267              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Nature has evolved eight different pathways for the capture and conversion of CO2, including the Calvin-Benson-Bassham cycle of photosynthesis. Yet, these pathways underlie constrains and only represent a fraction of the thousands of theoretically possible solutions. To overcome the limitations of natural evolution, we introduce the HydrOxyPropionyl-CoA/Acrylyl-CoA (HOPAC) cycle, a new-to-nature CO2-fixation pathway that was designed through metabolic retrosynthesis around the reductive carboxylation of acrylyl-CoA, a highly efficient principle of CO2 fixation. We realized the HOPAC cycle in a step-wise fashion and used rational engineering approaches and machine learning?guided workflows to further optimize its output by more than one order of magnitude. Version 4.0 of the HOPAC cycle encompasses 11 enzymes from six different organisms, converting ~3.0 mM CO2 into glycolate within 2 hours. Our work moves the hypothetical HOPAC cycle from a theoretical design into an established in vitro system that forms the basis for different potential applications. Natural CO2-fixation pathways are expanded by a human-made alternative.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-06
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Science Advances
  Kurztitel : Sci. Adv.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington : AAAS
Seiten: eadh4299 Band / Heft: 9 (24) Artikelnummer: eadh4299 Start- / Endseite: - Identifikator: ISSN: 2375-2548
CoNE: https://pure.mpg.de/cone/journals/resource/2375-2548