Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Improved gene annotation of the fungal wheat pathogen Zymoseptoria tritici based on combined Iso-Seq and RNA-Seq evidence

Lapalu, N., Lamothe, L., Petit, Y., Genissel, A., Delude, C., Feurtey, A., et al. (submitted). Improved gene annotation of the fungal wheat pathogen Zymoseptoria tritici based on combined Iso-Seq and RNA-Seq evidence.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Lapalu, Nicolas, Autor
Lamothe, Lucie, Autor
Petit, Yohann, Autor
Genissel, Anne, Autor
Delude, Camille, Autor
Feurtey, Alice, Autor
Abraham, Leen N., Autor
Smith, Dan, Autor
King, Robert, Autor
Renwick, Alison, Autor
Appertet, Mélanie, Autor
Sucher, Justine, Autor
Steindorff, Andrei S., Autor
Goodwin, Stephen B., Autor
Kema, Gert H.J., Autor
Grigoriev, Igor V., Autor
Hane, James, Autor
Rudd, Jason, Autor
Stukenbrock, Eva1, Autor                 
Croll, Daniel, Autor
Scalliet, Gabriel, AutorLebrun, Marc-Henri, Autor mehr..
Affiliations:
1Max Planck Fellow Group Environmental Genomics (Stukenbrock), Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_2068284              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Despite large omics datasets, the establishment of a reliable gene annotation is still challenging for eukaryotic genomes. Here, we used the reference genome of the major fungal wheat pathogen Zymoseptoria tritici (isolate IPO323) as a case study to develop methods to improve eukaryotic gene prediction. Four previous IPO323 annotations identified 10,933 to 13,260 gene models, but only one third of these coding sequences (CDS) have identical structures. To resolve these discrepancies and improve gene models, we generated full-length transcripts using long-read sequencing. This dataset was used together with other evidence (RNA-Seq transcripts and protein sequences) to generate novel ab initio gene models. The selection of the best structure among novel and existing gene models was performed according to transcript and protein evidence using InGenAnnot, a novel bioinformatics suite. Overall, 13,414 re-annotated gene models (RGMs) were predicted, including 671 new genes among which 53 encoded effector candidates. This process corrected many of the errors (15%) observed in previous gene models (coding sequence fusions, false introns, missing exons). While fungal genomes have poor annotations of untranslated regions (UTRs), our Iso-Seq long-read sequences outlined 5’ and 3’UTRs for 73% of the RGMs. Alternative transcripts were identified for 13% of RGMs, mostly due to intron retention (75%), likely corresponding to unprocessed pre-mRNAs. A total of 353 genes displayed alternative transcripts with combinations of previously predicted or novel exons. Long non-coding transcripts (lncRNAs) and double-stranded RNAs from two fungal viruses were also identified. Most lncRNAs corresponded to antisense transcripts of genes (52%). lncRNAs that were up or down regulated during infection were enriched in antisense transcripts (70%), suggesting their involvement in the control of gene expression. Our results showed that combining different ab initio gene predictions and evidence-driven curation using InGenAnnot improved the quality of gene annotations of a compact eukaryotic genome. Our analysis also provided new insights into the transcriptional landscape of Z. tritici, helping develop an increasingly complex picture of its biology.Competing Interest StatementThe authors have declared no competing interest.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-05-302023-05-30
 Publikationsstatus: Eingereicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Keine Begutachtung
 Identifikatoren: DOI: 10.1101/2023.04.26.537486
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: