English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Accelerating the design of compositionally complex materials via physics-informed artificial intelligence

Raabe, D., Mianroodi, J. R., & Neugebauer, J. (2023). Accelerating the design of compositionally complex materials via physics-informed artificial intelligence. Nature Computational Science, 3(3), 198-209. doi:10.1038/s43588-023-00412-7.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Raabe, Dierk1, 2, Author           
Mianroodi, Jaber Rezaei3, Author           
Neugebauer, Jörg4, Author           
Affiliations:
1Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
2Sustainable Synthesis of Materials, Interdepartmental and Partner Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3289784              
3Computational Sustainable Metallurgy, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3243050              
4Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              

Content

show
hide
Free keywords: -
 Abstract: The chemical space for designing materials is practically infinite. This makes disruptive progress by traditional physics-based modeling alone challenging. Yet, training data for identifying composition–structure–property relations by artificial intelligence are sparse. We discuss opportunities to discover new chemically complex materials by hybrid methods where physics laws are combined with artificial intelligence.

Details

show
hide
Language(s): -
 Dates: 2023-03-31
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/s43588-023-00412-7
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : BIGmax research network
Grant ID : -
Funding program : Financial support by the BIGmax research network of the Max-Planck Society (https://www.bigmax.mpg.de/).
Funding organization : Max-Planck Society

Source 1

show
hide
Title: Nature Computational Science
  Abbreviation : Nat Comput Sci
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Nature Research
Pages: - Volume / Issue: 3 (3) Sequence Number: - Start / End Page: 198 - 209 Identifier: ISSN: 2662-8457
CoNE: https://pure.mpg.de/cone/journals/resource/2662-8457