English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Online Defense Strategies for Reinforcement Learning Against Adaptive Reward Poisoning

Nika, A., Singla, A., & Radanovic, G. (2023). Online Defense Strategies for Reinforcement Learning Against Adaptive Reward Poisoning. In F. Ruiz, J. Dy, & J.-W. van de Meent (Eds.), Proceedings of The 26th International Conference on Artificial Intelligence and Statistics (pp. 335-358). PMRL.

Item is

Basic

show hide
Genre: Conference Paper

Files

show Files
hide Files
:
nika23a.pdf (Publisher version), 10MB
Name:
nika23a.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Nika, Andi1, Author           
Singla, Adish1, Author                 
Radanovic, Goran2, Author           
Affiliations:
1Group A. Singla, Max Planck Institute for Software Systems, Max Planck Society, ou_2541698              
2Group K. Gummadi, Max Planck Institute for Software Systems, Max Planck Society, ou_2105291              

Content

show

Details

show
hide
Language(s): eng - English
 Dates: 20232023
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: NikaAISTATS23
URN: https://proceedings.mlr.press/v206/nika23a/nika23a.pdf
 Degree: -

Event

show
hide
Title: 26th International Conference on Artificial Intelligence and Statistics
Place of Event: Valencia, Spain
Start-/End Date: 2023-04-25 - 2023-04-27

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of The 26th International Conference on Artificial Intelligence and Statistics
  Abbreviation : AISTATS 2023
Source Genre: Proceedings
 Creator(s):
Ruiz, Francisco1, Editor
Dy, Jennifer1, Editor
van de Meent, Jan-Wilem1, Editor
Affiliations:
1 External Organizations, ou_persistent22            
Publ. Info: PMRL
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 335 - 358 Identifier: -

Source 2

show
hide
Title: Proceedings of Machine Learning Research
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 206 Sequence Number: - Start / End Page: - Identifier: -