English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Elucidating the morphology of the endoplasmic reticulum : puzzles and perspectives

Lipowsky, R., Pramanik, S., Benk, A. S., Tarnawski, M., Spatz, J. P., & Dimova, R. (2023). Elucidating the morphology of the endoplasmic reticulum: puzzles and perspectives. ACS Nano, 17(13), 11957-11968. doi:10.1021/acsnano.3c01338.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 6MB
Name:
Article.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Lipowsky, Reinhard1, Author                 
Pramanik, Shreya1, Author                 
Benk, Amelie S., Author
Tarnawski, Miroslaw, Author
Spatz, Joachim P., Author
Dimova, Rumiana2, Author                 
Affiliations:
1Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863327              
2Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863328              

Content

show
hide
Free keywords: membrane morphology; endoplasmic reticulum; membrane elasticity; Steiner minimal trees; triunduloids; curvature elasticity; membrane fission
 Abstract: Artificial or synthetic organelles are a key challenge for bottom-up synthetic biology. So far, synthetic organelles have typically been based on spherical membrane compartments, used to spatially confine selected chemical reactions. In vivo, these compartments are often far from being spherical and can exhibit rather complex architectures. A particularly fascinating example is provided by the endoplasmic reticulum (ER), which extends throughout the whole cell by forming a continuous network of membrane nanotubes connected by three-way junctions. The nanotubes have a typical diameter of between 50 and 100 nm. In spite of much experimental progress, several fundamental aspects of the ER morphology remain elusive. A long-standing puzzle is the straight appearance of the tubules in the light microscope, which form irregular polygons with contact angles close to 120°. Another puzzling aspect is the nanoscopic shapes of the tubules and junctions, for which very different images have been obtained by electron microcopy and structured illumination microscopy. Furthermore, both the formation and maintenance of the reticular networks require GTP and GTP-hydrolyzing membrane proteins. In fact, the networks are destroyed by the fragmentation of nanotubes when the supply of GTP is interrupted. Here, it is argued that all of these puzzling observations are intimately related to each other and to the dimerization of two membrane proteins anchored to the same membrane. So far, the functional significance of this dimerization process remained elusive and, thus, seemed to waste a lot of GTP. However, this process can generate an effective membrane tension that stabilizes the irregular polygonal geometry of the reticular networks and prevents the fragmentation of their tubules, thereby maintaining the integrity of the ER. By incorporating the GTP-hydrolyzing membrane proteins into giant unilamellar vesicles, the effective membrane tension will become accessible to systematic experimental studies.

Details

show
hide
Language(s): eng - English
 Dates: 2023-06-282023
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1021/acsnano.3c01338
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ACS Nano
  Abbreviation : ACS Nano
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: - Volume / Issue: 17 (13) Sequence Number: - Start / End Page: 11957 - 11968 Identifier: ISSN: 1936-0851