Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

EndNote (UTF-8)
 
DownloadE-Mail
  New Strategy for Boosting Cathodic Performance of Protonic Ceramic Fuel Cells Through Incorporating a Superior Hydronation Second Phase

Zhou, C., Wang, X., Liu, D., Fei, M., Dai, J., Guan, D., et al. (2023). New Strategy for Boosting Cathodic Performance of Protonic Ceramic Fuel Cells Through Incorporating a Superior Hydronation Second Phase. Energy & Environmental Materials: EEM, 7(4): e12660, pp. 1-10. doi:10.1002/eem2.12660.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Zhou, Chuan1, Autor
Wang, Xixi1, Autor
Liu, Dongliang1, Autor
Fei, Meijuan1, Autor
Dai, Jie1, Autor
Guan, Daqin1, Autor
Hu, Zhiwei2, Autor           
Zhang, Linjuan1, Autor
Wang, Yu1, Autor
Wang, Wei1, Autor
O'Hayre, Ryan1, Autor
Jiang, San Ping1, Autor
Zhou, Wei1, Autor
Liu, Meilin1, Autor
Shao, Zongping1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863461              

Inhalt

ausblenden:
Schlagwörter: Electrodes; Fuel cells; Gas fuel purification; Oxygen; Perovskite; Phase interfaces; Ceramic fuel cells; Electrode surfaces; High-hydrating capability; Intrinsic activities; Oxygen activations; Performance; Protonic; Protonic ceramic fuel cell; Second phase; Water formation; Proton conductivity
 Zusammenfassung: For protonic ceramic fuel cells, it is key to develop material with high intrinsic activity for oxygen activation and bulk proton conductivity enabling water formation at entire electrode surface. However, a higher water content which benefitting for the increasing proton conductivity will not only dilute the oxygen in the gas, but also suppress the O2 adsorption on the electrode surface. Herein, a new electrode design concept is proposed, that may overcome this dilemma. By introducing a second phase with high-hydrating capability into a conventional cobalt-free perovskite to form a unique nanocomposite electrode, high proton conductivity/concentration can be reached at low water content in atmosphere. In addition, the hydronation creates additional fast proton transport channel along the two-phase interface. As a result, high protonic conductivity is reached, leading to a new breakthrough in performance for proton ceramic fuel cells and electrolysis cells devices among available air electrodes. © 2023 The Authors. Energy Environmental Materials published by John Wiley Sons Australia, Ltd on behalf of Zhengzhou University.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2023-07-092023-07-09
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1002/eem2.12660
BibTex Citekey: Zhou2023
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Energy & Environmental Materials : EEM
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Hoboken : Wiley
Seiten: - Band / Heft: 7 (4) Artikelnummer: e12660 Start- / Endseite: 1 - 10 Identifikator: ISSN: 2575-0356
CoNE: https://pure.mpg.de/cone/journals/resource/2575-0356