Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X-ray Absorption Spectroscopy and Machine Learning

Martini, A., Hursán, D., Timoshenko, J., Rüscher, M., Haase, F., Rettenmaier, C., et al. (2023). Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X-ray Absorption Spectroscopy and Machine Learning. Journal of the American Chemical Society, 154(31), 17351-17366. doi:10.1021/jacs.3c04826.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
jacs.3c04826.pdf (Verlagsversion), 7MB
Name:
jacs.3c04826.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2023
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Martini, Andrea1, Autor                 
Hursán, Dorottya1, Autor                 
Timoshenko, Janis1, Autor                 
Rüscher, Martina1, Autor           
Haase, Felix1, Autor           
Rettenmaier, Clara1, Autor           
Ortega, Eduardo1, Autor           
Etxebarria, Ane1, Autor           
Roldan Cuenya, Beatriz1, Autor                 
Affiliations:
1Interface Science, Fritz Haber Institute, Max Planck Society, ou_2461712              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-05-122023-07-312023-08-09
 Publikationsstatus: Erschienen
 Seiten: 16
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/jacs.3c04826
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of the American Chemical Society
  Andere : JACS
  Kurztitel : J. Am. Chem. Soc.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: 16 Band / Heft: 154 (31) Artikelnummer: - Start- / Endseite: 17351 - 17366 Identifikator: ISSN: 0002-7863
CoNE: https://pure.mpg.de/cone/journals/resource/954925376870