English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Methyl jasmonate elicitation effect on the metabolic profile of cambial meristematic cells culture derived from sweet basil (Ocimum basilicum L.) in relation to antioxidant activity: Untargeted metabolomics study in a time-based approach

Zayed, A., Farag, M. A., Mehring, A., Salem, M. A., Ibrahim, R. M., Alseekh, S., et al. (2023). Methyl jasmonate elicitation effect on the metabolic profile of cambial meristematic cells culture derived from sweet basil (Ocimum basilicum L.) in relation to antioxidant activity: Untargeted metabolomics study in a time-based approach. Phytochemistry, 213: 113777. doi:10.1016/j.phytochem.2023.113777.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Zayed, Ahmed1, Author
Farag, Mohamed A.1, Author
Mehring, Alexander1, Author
Salem, Mohamed A.1, Author
Ibrahim, Rana M.1, Author
Alseekh, S.2, Author           
Fernie, A. R.3, Author           
Ulber, Roland1, Author
Affiliations:
1external, ou_persistent22              
2The Genetics of Crop Metabolism, Department Gutjahr, Max Planck Institute of Molecular Plant Physiology, Max Planck Society, ou_3397071              
3Central Metabolism, Department Gutjahr, Max Planck Institute of Molecular Plant Physiology, Max Planck Society, ou_3396323              

Content

show
hide
Free keywords: Cambial meristematic cells, Elicitation, Metabolomics, LC/MS-MS, Multivariate data analysis, Sweet basil
 Abstract: The undifferentiated cambial meristematic cell (CMC) has been recognized as a value-added production platform for plant natural products in comparison to the dedifferentiated plant cell line (DDC). In a time-based approach at 0, 24, 48, and 72 h, the present study aimed at investigating the phytochemical metabolome of methyl jasmonate (MeJA)-elicited CMC cultures derived from sweet basil (Ocimum basilicum L.), including primary and secondary metabolites analyzed using GC/TOF-MS post-silylation and RP-UPLC-C18-FT-MS/MS, respectively, as well as the analysis of aroma composition using headspace SPME-GC-MS. The results revealed a stress response in primary metabolism manifested by an increase in amino and organic acids reaching their maximum levels after 48 (1.3-fold) and 72 (1.7-fold) h, respectively. In addition, phenolic acids (e.g., sagerinic acid, rosmarinic acid, and 3-O-methylrosmarinic acid) followed by flavonoid aglycones (e.g., salvigenin and 5,6,4′-trihydroxy-7,3′-dimethoxyflavone) were the most abundant with prominent increases at 48 (1.2-fold) and 72 (2.1-fold) h, respectively. The aroma was intensified by the elicitation along the time, especially after 48 and 72 h. Furthermore, multivariate data analyses, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) confirmed elicitation effect, especially post 48 and 72 h. The study further assessed the effect of MeJA elicitation on the antioxidant and polyphenolic content. The cultures at 48 h demonstrated a significant (p < 0.05) antioxidant activity concurrently with correlation with total polyphenolic content using Pearson's correlation. Our study provides new insights to the elicitation impact on primary and secondary metabolism, in addition to aroma profile, to orchestrate the stress response and in relation to antioxidant effect.

Details

show
hide
Language(s): eng - English
 Dates: 2023-06-292023-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.phytochem.2023.113777
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Phytochemistry
  Other : Phytochem
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Elsevier
Pages: - Volume / Issue: 213 Sequence Number: 113777 Start / End Page: - Identifier: ISSN: 0031-9422
CoNE: https://pure.mpg.de/cone/journals/resource/954925433416