Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Volitional control of individual neurons in the human brain

Patel, K., Katz, C. N., Kalia, S. K., Popovic, M. R., & Valiante, T. A. (2021). Volitional control of individual neurons in the human brain. Brain, 144(12), 3651-3663. doi:10.1093/brain/awab370.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
awab370.pdf (Verlagsversion), 694KB
 
Datei-Permalink:
-
Name:
awab370.pdf
Beschreibung:
Archivkopie
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
2020.05.05.079038v1.full.pdf (Preprint), 2MB
Name:
2020.05.05.079038v1.full.pdf
Beschreibung:
Downloaded from bioRxiv at 2023-08-10
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2020
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1093/brain/awab370 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Patel, Kramay1, Autor
Katz, Chaim N1, Autor
Kalia, Suneil K.1, Autor
Popovic, Milos R.1, Autor
Valiante, Taufik A.1, 2, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Max Planck - University of Toronto Centre for Neural Science and Technology, Max Planck Institute of Microstructure Physics, Max Planck Society, ou_3524333              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Brain–machine interfaces allow neuroscientists to causally link specific neural activity patterns to a particular behaviour. Thus, in addition to their current clinical applications, brain–machine interfaces can also be used as a tool to investigate neural mechanisms of learning and plasticity in the brain. Decades of research using such brain–machine interfaces have shown that animals (non-human primates and rodents) can be operantly conditioned to self-regulate neural activity in various motor-related structures of the brain. Here, we ask whether the human brain, a complex interconnected structure of over 80 billion neurons, can learn to control itself at the most elemental scale—a single neuron.

We used the unique opportunity to record single units in 11 individuals with epilepsy to explore whether the firing rate of a single (direct) neuron in limbic and other memory-related brain structures can be brought under volitional control. To do this, we developed a visual neurofeedback task in which participants were trained to move a block on a screen by modulating the activity of an arbitrarily selected neuron from their brain.

Remarkably, participants were able to volitionally modulate the firing rate of the direct neuron in these previously uninvestigated structures. We found that a subset of participants (learners), were able to improve their performance within a single training session. Successful learning was characterized by (i) highly specific modulation of the direct neuron (demonstrated by significantly increased firing rates and burst frequency); (ii) a simultaneous decorrelation of the activity of the direct neuron from the neighbouring neurons; and (iii) robust phase-locking of the direct neuron to local alpha/beta-frequency oscillations, which may provide some insights in to the potential neural mechanisms that facilitate this type of learning.

Volitional control of neuronal activity in mnemonic structures may provide new ways of probing the function and plasticity of human memory without exogenous stimulation. Furthermore, self-regulation of neural activity in these brain regions may provide an avenue for the development of novel neuroprosthetics for the treatment of neurological conditions that are commonly associated with pathological activity in these brain structures, such as medically refractory epilepsy.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2021-10-082021-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1093/brain/awab370
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Brain
  Andere : Brain: a journal of neurology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford : Oxford Univ. Press
Seiten: - Band / Heft: 144 (12) Artikelnummer: - Start- / Endseite: 3651 - 3663 Identifikator: ISSN: 0006-8950
CoNE: https://pure.mpg.de/cone/journals/resource/954925385135