Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Three-dimensional reverse engineering of neuronal microcircuits: The barrel cortex in silico

Udvary, D. (2021). Three-dimensional reverse engineering of neuronal microcircuits: The barrel cortex in silico. PhD Thesis, Mathematisch-Naturwissenschaftliche Fakultät der Eberhard Karls Universität Tübingen, Tübingen.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Hochschulschrift

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Grün
Beschreibung:
Link zum Volltext
OA-Status:
Grün

Urheber

einblenden:
ausblenden:
 Urheber:
Udvary, Daniel1, Autor                 
Affiliations:
1Max Planck Research Group In Silico Brain Sciences, Max Planck Institute for Neurobiology of Behavior – caesar, Max Planck Society, ou_3361774              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Neurowissenschaften, Gehirn, Modell, Anatomie
 DDC: Natural Sciences and Mathemetics - 500
 DDC: Life sciences; biology - 570
 Zusammenfassung: The mammalian neocortex is one of the most complex biological tissues and the center of higher brain functions. Currently, the specific distribution of neurons and neurites, as well as their intricate wiring within an entire neocortical area that emerge during development and are then refined throughout life, are not accessible. Here, I present a reverse engineered model of one neocortical area, the rat barrel cortex. First, I created a model of its structural composition constraint by measurements of cortex geometry, neuron distributions, and morphological reconstructions. This model provided anatomically realistic and robust estimates of the area's neuron and neurite distributions and captured the structural principles preserved across individuals. Second, I used the model's distribution of neurites to constrain synapse formation. Specifically, I introduced a stochastic synapse formation strategy that predicts the area's wiring diagrams if they were solely shaped by the area's structural composition in the absence of any learning or plasticity rules. I find that the predicted wiring diagrams are sparse, heterogeneous, correlated, and structured unlike random networks --- all of which are either observed or speculated properties of neocortical wiring. A systematic comparison between predicted and empirical wiring properties on the subcellular, cellular, and network level revealed a high degree of consistency. This demonstrates that the structural organization of the neuropil provides strong constraints for synapse formation. For the consistently predicted wiring properties, such as connection probabilities, it cannot be ruled out that they were shaped by the area's structural composition, i.e., implicitly by the developmental mechanisms that positioned neurons and neurites within the neuropil. A more sophisticated synapse formation strategy is not necessarily required. In contrast, such a sophisticated strategy might underlie the inconsistently predicted wiring properties, e.g., the frequency of certain circuit motifs. The herein presented approach can hence act as a starting point to identify wiring correlates of sensory experience or learning and provide a foundation to explore the relationship between synapse formation, an area's structural composition, and network architecture.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-05-07
 Publikationsstatus: Erschienen
 Seiten: xix, 244 Seiten
 Ort, Verlag, Ausgabe: Tübingen : Mathematisch-Naturwissenschaftliche Fakultät der Eberhard Karls Universität Tübingen
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: URN: http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1150619
DOI: 10.15496/publikation-56436
 Art des Abschluß: Doktorarbeit

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: