Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Visual heuristics for verb production: Testing a deep‐learning model with experiments in Japanese

Chang, F., Tatsumi, T., Hiranuma, Y., & Bannard, C. (2023). Visual heuristics for verb production: Testing a deep‐learning model with experiments in Japanese. Cognitive Science: a multidisciplinary journal, 47(8): e13324. doi:10.1111/cogs.13324.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Chang_etal_2023_visual heuristics for verb production.pdf (Verlagsversion), 4MB
Name:
Chang_etal_2023_visual heuristics for verb production.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2023
Copyright Info:
© 2023 The Authors. Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS). This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Chang, Franklin1, Autor
Tatsumi, Tomoko2, 3, Autor           
Hiranuma, Yuna1, Autor
Bannard, Colin4, Autor
Affiliations:
1Kobe City University of Foreign Studies, Kobe, Japan, ou_persistent22              
2Language Development Department, MPI for Psycholinguistics, Max Planck Society, ou_2340691              
3Kobe University, Kobe, Japan, ou_persistent22              
4University of Manchester, Manchester, UK, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Tense/aspect morphology on verbs is often thought to depend on event features like telicity, but it is not known how speakers identify these features in visual scenes. To examine this question, we asked Japanese speakers to describe computer-generated animations of simple actions with variation in visual features related to telicity. Experiments with adults and children found that they could use goal information in the animations to select appropriate past and progressive verb forms. They also produced a large number of different verb forms. To explain these findings, a deep-learning model of verb production from visual input was created that could produce a human-like distribution of verb forms. It was able to use visual cues to select appropriate tense/aspect morphology. The model predicted that video duration would be related to verb complexity, and past tense production would increase when it received the endpoint as input. These predictions were confirmed in a third study with Japanese adults. This work suggests that verb production could be tightly linked to visual heuristics that support the understanding of events.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-07-312023
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1111/cogs.13324
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Cognitive Science : a multidisciplinary journal
  Andere : Cognitive Science : Journal of the cognitive science society
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Malden, Mass. : Wiley-Blackwell
Seiten: - Band / Heft: 47 (8) Artikelnummer: e13324 Start- / Endseite: - Identifikator: ISSN: 1551-6709
CoNE: https://pure.mpg.de/cone/journals/resource/15516709