English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Genetic impairment of folate metabolism regulates cortical interneurons and social behavior

Sadigurschi, N., Scrift, G., Hirrlinger, J., & Golan, H. M. M. (2023). Genetic impairment of folate metabolism regulates cortical interneurons and social behavior. Frontiers in Neuroscience, 17: 1203262. doi:10.3389/fnins.2023.1203262.

Item is

Files

show Files
hide Files
:
fnins-17-1203262.pdf (Publisher version), 3MB
Name:
fnins-17-1203262.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Sadigurschi, Noa, Author
Scrift, Gilad, Author
Hirrlinger, Johannes1, Author           
Golan, Hava M. M., Author
Affiliations:
1Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society, ou_3350301              

Content

show
hide
Free keywords: -
 Abstract: Introduction: The implications of folate deficiency in neuropsychiatric disorders were demonstrated in numerous studies. Genetic deficiency in a key folate metabolism enzyme, MTHFR, is an example of the interaction between genetic and environmental risk factors: the maternal MTHFR deficiency governs in-utero nutrient availability, and the embryo’s Mthfr genotype influences its ability to metabolize folates. Here, we explore how the maternal and offspring Mthfr genotypes affect cortical interneuron densities and distributions, mouse social outcome, and the relation of the different interneuron patterns to cortical excitability.

Methods: Two experiments were conducted to examine the effects of maternal and offspring Mthfr-KO heterozygosity. Mice were tested for direct social interactions (DSIs), repetitive behavior and cortical laminar distribution of interneuron populations expressing glutamate-decarboxylase-65, parvalbumin and somatostatin. Susceptibility to seizure was tested by exposure to pentylenetetrazole (PTZ).

Results: Maternal Mthfr+/− genotype was associated with suppressed social activities and reduced interneuron densities in all layers of the retrosplenial cortex (RSC). Somatostatin density and the somatostatin/parvalbumin ratio in the RSC and frontal cortex positively correlated with social behavior in the mice. An interaction between maternal and offspring Mthfr genotypes resulted in higher susceptibility of wild-type offspring to PTZ induced seizure.

Discussion: Maternal folate metabolism was shown to be critical to interneuron ontogenesis. Our results demonstrate that interneurons have a specific susceptibility to folate deficiency that may mediate folate’s involvement in neuropsychiatric disease. The relations between cortical somatostatin interneuron patterns and social behavior highlight this subpopulation of interneurons as a target for further research.

Details

show
hide
Language(s): eng - English
 Dates: 2023-06-28
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.3389/fnins.2023.1203262
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : This study was supported by the Israel Science Foundation grant 515/17 to HG.
Grant ID : -
Funding program : -
Funding organization : -

Source 1

show
hide
Title: Frontiers in Neuroscience
  Other : Front Neurosci
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lausanne, Switzerland : Frontiers Research Foundation
Pages: - Volume / Issue: 17 Sequence Number: 1203262 Start / End Page: - Identifier: ISSN: 1662-4548
ISSN: 1662-453X
CoNE: https://pure.mpg.de/cone/journals/resource/1662-4548