English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Dissolved Cd, Co, Cu, Fe, Mn, Ni, and Zn in the Arctic Ocean

Gerringa, L. J. A., Rijkenberg, M. J. A., Slagter, H. A., Laan, P., Paffrath, R., Bauch, D., et al. (2021). Dissolved Cd, Co, Cu, Fe, Mn, Ni, and Zn in the Arctic Ocean. Journal of Geophysical Research: Oceans, 126(9): e2021JC017323. doi:10.1029/2021JC017323.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Gerringa, L. J. A., Author
Rijkenberg, M. J. A., Author
Slagter, H. A.1, Author           
Laan, P., Author
Paffrath, R., Author
Bauch, D., Author
van der Loeff, M. Rutgers, Author
Middag, R., Author
Affiliations:
1Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_2237635              

Content

show
hide
Free keywords: -
 Abstract: During the Polarstern (PS94) expedition, summer 2015, part of the international GEOTRACES program, sources and sinks of dissolved (D) Cd, Co, Cu, Fe, Mn, Ni, and Zn were studied in the central Arctic Ocean. In the Polar Surface Water in which the TransPolar Drift (TPD) is situated, salinity and δ18O derived fractions indicated a distinct riverine source for silicate DCo, DCu, DFe, DMn, and DNi. Linear relationships between DMn and the meteoric fraction depended on source distance, likely due to Mn-precipitation during transport. In the upper 50 m of the Makarov Basin, outside the TPD core, DCo, DMn, DNi, DCd, and DCu were enriched by Pacific waters, whereas DFe seemed diluted. DCo, DFe, DMn, and DZn were relatively high in the Barents Sea and led to enrichment of Atlantic water flowing into the Nansen Basin. Deep concentrations of all metals were significantly lower in the Makarov Basin compared to the Nansen and Amundsen, the Eurasian, Basins. The Gakkel ridge hydrothermal input and higher continental slope convection are explanations for higher metal concentrations in the Eurasian Basins. Although scavenging rates are lower in the Makarov Basin compared to the Eurasian Basins, the residence time is longer and therefore scavenging can decrease the dissolved concentrations with time. This study provides a baseline to assess future change, and additionally identifies processes driving trace metal distributions. Our results underline the importance of fluvial input as well as shelf sources and internal cycling, notably scavenging, for the distribution of bio-active metals in the Arctic Ocean.

Details

show
hide
Language(s): eng - English
 Dates: 2021-08-26
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1029/2021JC017323
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research: Oceans
  Other : JGR
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Hoboken, NJ : Wiley
Pages: 28 Volume / Issue: 126 (9) Sequence Number: e2021JC017323 Start / End Page: - Identifier: Other: 2169-9291
CoNE: https://pure.mpg.de/cone/journals/resource/2169-9291