Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Handling EEG artifacts and searching individually optimal experimental parameter in real time: A system development and demonstration

Ouyang, G., Dien, J., & Lorenz, R. (2022). Handling EEG artifacts and searching individually optimal experimental parameter in real time: A system development and demonstration. Journal of Neural Engineering, 19(1): 016016. doi:10.1088/1741-2552/ac42b6.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Ouyang, G, Autor
Dien, J, Autor
Lorenz, R1, Autor                 
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Objective.Neuroadaptive paradigms that systematically assess event-related potential (ERP) features across many different experimental parameters have the potential to improve the generalizability of ERP findings and may help to accelerate ERP-based biomarker discovery by identifying the exact experimental conditions for which ERPs differ most for a certain clinical population. Obtaining robust and reliable ERPs online is a prerequisite for ERP-based neuroadaptive research. One of the key steps involved is to correctly isolate electroencephalography artifacts in real time because they contribute a large amount of variance that, if not removed, will greatly distort the ERP obtained. Another key factor of concern is the computational cost of the online artifact handling method. This work aims to develop and validate a cost-efficient system to support ERP-based neuroadaptive research.Approach.We developed a simple online artifact handling method, single trial PCA-based artifact removal (SPA), based on variance distribution dichotomies to distinguish between artifacts and neural activity. We then applied this method in an ERP-based neuroadaptive paradigm in which Bayesian optimization was used to search individually optimal inter-stimulus-interval (ISI) that generates ERP with the highest signal-to-noise ratio.Main results.SPA was compared to other offline and online algorithms. The results showed that SPA exhibited good performance in both computational efficiency and preservation of ERP pattern. Based on SPA, the Bayesian optimization procedure was able to quickly find individually optimal ISI.Significance.The current work presents a simple yet highly cost-efficient method that has been validated in its ability to extract ERP, preserve ERP effects, and better support ERP-based neuroadaptive paradigm.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-02
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1088/1741-2552/ac42b6
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Neural Engineering
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol : Institute of Physics Publishing
Seiten: 16 Band / Heft: 19 (1) Artikelnummer: 016016 Start- / Endseite: - Identifikator: ISSN: 1741-2552
CoNE: https://pure.mpg.de/cone/journals/resource/17412552