English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Systematic in situ Investigation of the Formation of NH3 Cracking Catalysts from Precursor Perovskites ABO3 (A=La,Ca,Sr and B=Fe,Co,Ni) and their Catalytic Performance

Gallus, S., & Weidenthaler, C. (2023). Systematic in situ Investigation of the Formation of NH3 Cracking Catalysts from Precursor Perovskites ABO3 (A=La,Ca,Sr and B=Fe,Co,Ni) and their Catalytic Performance. ChemCatChem, 15(21): e202300947. doi:10.1002/cctc.202300947.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Gallus, Simone1, Author           
Weidenthaler, Claudia1, Author           
Affiliations:
1Research Group Weidenthaler, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1950291              

Content

show
hide
Free keywords: Ammonia; Perovskite phases; Supported catalysts; In situ X-ray diffraction; Exsolution
 Abstract: This work addresses the formation of ammonia (NH3) decomposition catalysts derived from perovskites ABO3 (A=La, Ca, Sr, and B=Fe, Co, Ni) precursors via operando synchrotron X-ray diffraction experiments. During the reaction in NH3, the perovskite precursors are decomposed and the transition metals are reduced. Depending on their reduction properties, active metallic catalysts are formed in situ on La2O3 as support. The reduction behavior of the perovskites, formation of intermediate phases during activation, and catalytic performance was studied in detail. In addition, microstructure properties such as crystallite sizes and particle morphology were analyzed. Co-/Ni-based perovskites decomposed completely during activation to Co0/Ni0 supported on La2O3 while Fe-based perovskites were fully stable but inactive in catalysis. This difference is due to varying electronic properties of the transition metals, e. g., decreasing electronegativity from Ni to Fe. With decreasing reducibility, the intermediate phases during activation formed more distinct. La3+ was partially substituted by Ca2+/Sr2+ in LaCoO3 to test for advantageous effects in NH3 decomposition. The best performance was observed using the precatalyst La0.8Sr0.2CoO3 with a conversion of 86 % (100 % NH3, 15000 mL g−1 h−1) at 550 °C.

Details

show
hide
Language(s): eng - English
 Dates: 2023-07-252023-09-222023-11-08
 Publication Status: Issued
 Pages: 13
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/cctc.202300947
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ChemCatChem
  Abbreviation : ChemCatChem
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: 15 (21) Sequence Number: e202300947 Start / End Page: - Identifier: ISSN: 1867-3880
CoNE: https://pure.mpg.de/cone/journals/resource/1867-3880