Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI

Lorenz, R., Monti, R., Violante, I., Anagnostopoulos, C., Faisal, A., Montana, G., et al. (2016). The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI. NeuroImage, 129, 320-334. doi:10.1016/j.neuroimage.2016.01.032.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Urheber

einblenden:
ausblenden:
 Urheber:
Lorenz, R1, Autor                 
Monti, RP, Autor
Violante, IR, Autor
Anagnostopoulos, C, Autor
Faisal, AA, Autor
Montana, G, Autor
Leech, R, Autor
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Functional neuroimaging typically explores how a particular task activates a set of brain regions. Importantly though, the same neural system can be activated by inherently different tasks. To date, there is no approach available that systematically explores whether and how distinct tasks probe the same neural system. Here, we propose and validate an alternative framework, the Automatic Neuroscientist, which turns the standard fMRI approach on its head. We use real-time fMRI in combination with modern machine-learning techniques to automatically design the optimal experiment to evoke a desired target brain state. In this work, we present two proof-of-principle studies involving perceptual stimuli. In both studies optimization algorithms of varying complexity were employed; the first involved a stochastic approximation method while the second incorporated a more sophisticated Bayesian optimization technique. In the first study, we achieved convergence for the hypothesized optimum in 11 out of 14 runs in less than 10 min. Results of the second study showed how our closed-loop framework accurately and with high efficiency estimated the underlying relationship between stimuli and neural responses for each subject in one to two runs: with each run lasting 6.3 min. Moreover, we demonstrate that using only the first run produced a reliable solution at a group-level. Supporting simulation analyses provided evidence on the robustness of the Bayesian optimization approach for scenarios with low contrast-to-noise ratio. This framework is generalizable to numerous applications, ranging from optimizing stimuli in neuroimaging pilot studies to tailoring clinical rehabilitation therapy to patients and can be used with multiple imaging modalities in humans and animals.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016-01
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.neuroimage.2016.01.032
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: NeuroImage
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Orlando, FL : Academic Press
Seiten: - Band / Heft: 129 Artikelnummer: - Start- / Endseite: 320 - 334 Identifikator: ISSN: 1053-8119
CoNE: https://pure.mpg.de/cone/journals/resource/954922650166