日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell

Zhu, B., Wang, B., Wang, Y., Raza, R., Tan, W., Kim, J., van Aken, P. A., & Lund, P. (2017). Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy, 37, 195-202.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000E-D4EE-7 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000E-D4EF-6
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Zhu, B., 著者
Wang, B., 著者
Wang, Y.1, 著者           
Raza, R., 著者
Tan, W., 著者
Kim, J., 著者
van Aken, P. A.2, 著者           
Lund, P., 著者
所属:
1Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society, ou_3370481              
2Scientific Facility Stuttgart Center for Electron Microscopy (Peter A. van Aken), Max Planck Institute for Solid State Research, Max Planck Society, ou_3370493              

内容説明

表示:
非表示:
キーワード: Fuel cell device; Semiconductor ionic fuel cell; Charge separation, ionic transport; Heterostructure; Composite; Semiconductor-ion material
 要旨: Functionalities in heterostructure oxide material interfaces are an emerging subject resulting in extraordinary material properties such as great enhancement in the ionic conductivity in a heterostructure between a semiconductor SrTiO3 and an ionic conductor YSZ (yttrium stabilized zirconia), which can be expected to have a profound effect in oxygen ion conductors and solid oxide fuel cells [1-4]. Hereby we report a semiconductorionic heterostructure La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) and Sm-Ca co-doped ceria (SCDC) material possessing unique properties for new generation fuel cells using semiconductor-ionic heterostructure composite materials. The LSCF-SCDC system contains both ionic and electronic conductivities, above 0.1 S/cm, but used as the electrolyte for the fuel cell it has displayed promising performance in terms of OCV (above 1.0 V) and enhanced power density (ca. 1000 mW/cm(2) at 550 degrees C). Such high electronic conduction in the electrolyte membrane does not cause any short-circuiting problem in the device, instead delivering enhanced power output. Thus, the study of the charge separation/transport and electron blocking mechanism is crucial and can play a vital role in understanding the resulting physical properties and physics of the materials and device. With atomic level resolution ARM 200CF microscope equipped with the electron energy-loss spectroscopy (EELS) analysis, we can characterize more accurately the buried interface between the LSCF and SCDC further reveal the properties and distribution of charge carriers in the heterostructures. This phenomenon constrains the carrier mobility and determines the charge separation and devices' fundamental working mechanism; continued exploration of this frontier can fulfill a next generation fuel cell based on the new concept of semiconductor-ionic fuel cells (SIFCs).

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2017
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): eDoc: 734981
ISI: 000402704500022
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Nano Energy
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: AMSTERDAM : ELSEVIER SCIENCE BV
ページ: - 巻号: 37 通巻号: - 開始・終了ページ: 195 - 202 識別子(ISBN, ISSN, DOIなど): ISSN: 2211-2855