English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A tunable azine covalent organic framework platform for visible light-induced hydrogen generation

Vyas, V. S., Haase, F., Stegbauer, L., Savasci, G., Podjaski, F., Ochsenfeld, C., et al. (2015). A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nature Communications, 6: 8508.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Vyas, V. S., Author
Haase, F.1, Author           
Stegbauer, L., Author
Savasci, G., Author
Podjaski, F., Author
Ochsenfeld, C., Author
Lotsch, B. V.1, Author           
Affiliations:
1Department Nanochemistry (Bettina V. Lotsch), Max Planck Institute for Solid State Research, Max Planck Society, ou_3370482              

Content

show
hide
Free keywords: -
 Abstract: Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water-and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications.

Details

show
hide
Language(s): eng - English
 Dates: 2015
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Internal
 Identifiers: eDoc: 713736
ISI: 000363149200001
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 6 Sequence Number: 8508 Start / End Page: - Identifier: ISSN: 2041-1723