Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Sn-Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for High-Rate and Long Life Li-Ion Batteries

Wu, C., Maier, J., & Yu, Y. (2015). Sn-Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for High-Rate and Long Life Li-Ion Batteries. Advanced Functional Materials, 25(23), 3488-3496.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Wu, C., Autor
Maier, J.1, Autor           
Yu, Y., Autor
Affiliations:
1Department Physical Chemistry of Solids (Joachim Maier), Max Planck Institute for Solid State Research, Max Planck Society, ou_3370483              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Sn-based materials have triggered significant research efforts as anodes for lithium-storage because of their high theoretical capacity. However, the practical applications of Sn-based materials are hindered by low capacity release and poor cycle life, which are mainly caused by structural pulverization and large volume changes on cycling. Herein, a surfactant-assisted assembly method is developed to fabricate 3D nanoarchitectures in which Sn-based nanoparticles are encapsulated by a porous graphene network. More precisely, the graphene forms a 3D cellular network, the interstices of which only partially filled by the electroactive masses, thus establishing a high concentration of interconnected nanosized pores. While the graphene-network itself guarantees fast electron transfer, it is the characteristic presence of nanosized pores in our network that leads to the favorable rate capability and cycling stability by i) accommodating the large volume expansion of Sn-based nanoparticles to ensure integrity of the 3D framework upon cycling and ii) enabling rapid access of Li-ions into Sn-based nanoparticles, which are in addition prevented from agglomerating. As a result, the 3D Sn-based nanoarchitectures deliver excellent electrochemical properties including high rate capability and stable cycle performance. Importantly, this strategy provides a new pathway for the rational engineering of anode materials with large volume changes to achieve improved electrochemical performances.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Interne Begutachtung
 Identifikatoren: eDoc: 713671
ISI: 000356376600006
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Functional Materials
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 25 (23) Artikelnummer: - Start- / Endseite: 3488 - 3496 Identifikator: ISSN: 1616-301X