English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Spin-triplet electron transport in hybrid superconductor heterostructures with a composite ferromagnetic interlayer

Sheyerman, A., Constantinian, K., Ovsyannikov, G., Kislinskii, Y., Shadrin, A., Kalabukhov, A., et al. (2015). Spin-triplet electron transport in hybrid superconductor heterostructures with a composite ferromagnetic interlayer. Journal of Experimental and Theoretical Physics, 120(6), 1024-1033.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Sheyerman, A., Author
Constantinian, K., Author
Ovsyannikov, G., Author
Kislinskii, Y., Author
Shadrin, A., Author
Kalabukhov, A., Author
Khaydukov, Y.1, Author
Affiliations:
1Max Planck Society, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: Hybrid YBa2Cu3O7 - x /SrRuO3/La0.7Sr0.3MnO3/Au-Nb superconductor mesastructures with a composite manganite-ruthenate ferromagnetic interlayer are studied using electrophysical, magnetic, and microwave methods. The supercurrent in the mesastructure is observed when the interlayer thickness is much larger than the coherence length of ferromagnetic materials. The peak on the dependence of the critical current density on the interlayer material thickness corresponds to the coherence length, which is in qualitative agreement with theoretical predictions for a system with spit-triplet superconducting correlations. The magnetic-field dependence of the critical current is determined by penetration of magnetic flux quanta and by the magnetic domain structure, as well as by the field dependence of disorientation of the magnetization vectors of the layers in the composite magnetic interlayer. It is found that the supercurrent exists in magnetic fields two orders of magnitude stronger than the field corresponding to entry of a magnetic flux quantum into the mesastructure. The current-phase relation (CPR) of the supercurrent of mesastructures is investigated upon a change in the magnetic field from zero to 30 Oe; the ratio of the second CPR harmonic to the first, determined from the dependence of the Shapiro steps on the microwave radiation amplitude, does not exceed 50%.

Details

show
hide
Language(s): eng - English
 Dates: 2015
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Internal
 Identifiers: eDoc: 713661
ISI: 000358650800013
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Experimental and Theoretical Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 120 (6) Sequence Number: - Start / End Page: 1024 - 1033 Identifier: ISSN: 1063-7761